Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To write the quadratic equation [tex]\( y = x^2 - 4x + 6 \)[/tex] in vertex form, which is [tex]\( y = a(x - h)^2 + k \)[/tex], follow these steps:
### Step 1: Identify coefficients
From the given quadratic equation [tex]\( y = x^2 - 4x + 6 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 6 \)[/tex]
### Step 2: Completing the square
To convert the quadratic equation to vertex form, we need to complete the square.
1. Start with the quadratic and linear terms inside the expression:
[tex]\[ y = x^2 - 4x + 6 \][/tex]
2. To complete the square, take half of the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-4\)[/tex]), square it, and then add and subtract this value inside the expression:
[tex]\[ \left( \frac{-4}{2} \right)^2 = (-2)^2 = 4 \][/tex]
3. Add and subtract this square within the original quadratic expression:
[tex]\[ y = x^2 - 4x + 4 - 4 + 6 \][/tex]
4. Group the perfect square trinomial and the constants:
[tex]\[ y = (x^2 - 4x + 4) + (6 - 4) \][/tex]
5. Factor the perfect square trinomial and simplify:
[tex]\[ y = (x - 2)^2 + 2 \][/tex]
### Step 3: Write in vertex form
The equation [tex]\( y = (x - 2)^2 + 2 \)[/tex] is in vertex form where [tex]\( a = 1 \)[/tex], [tex]\( h = 2 \)[/tex], and [tex]\( k = 2 \)[/tex].
### Conclusion
Comparing this with the given options:
1. [tex]\( y = (x + 2)^2 - 4 \)[/tex]
2. [tex]\( y = (x + 2)^2 - 2 \)[/tex]
3. [tex]\( y = (x - 2)^2 + 2 \)[/tex]
4. [tex]\( y = (x - 2)^2 + 4 \)[/tex]
The correct vertex form of [tex]\( y = x^2 - 4x + 6 \)[/tex] is:
[tex]\[ y = (x - 2)^2 + 2 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = (x - 2)^2 + 2} \][/tex]
### Step 1: Identify coefficients
From the given quadratic equation [tex]\( y = x^2 - 4x + 6 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 6 \)[/tex]
### Step 2: Completing the square
To convert the quadratic equation to vertex form, we need to complete the square.
1. Start with the quadratic and linear terms inside the expression:
[tex]\[ y = x^2 - 4x + 6 \][/tex]
2. To complete the square, take half of the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-4\)[/tex]), square it, and then add and subtract this value inside the expression:
[tex]\[ \left( \frac{-4}{2} \right)^2 = (-2)^2 = 4 \][/tex]
3. Add and subtract this square within the original quadratic expression:
[tex]\[ y = x^2 - 4x + 4 - 4 + 6 \][/tex]
4. Group the perfect square trinomial and the constants:
[tex]\[ y = (x^2 - 4x + 4) + (6 - 4) \][/tex]
5. Factor the perfect square trinomial and simplify:
[tex]\[ y = (x - 2)^2 + 2 \][/tex]
### Step 3: Write in vertex form
The equation [tex]\( y = (x - 2)^2 + 2 \)[/tex] is in vertex form where [tex]\( a = 1 \)[/tex], [tex]\( h = 2 \)[/tex], and [tex]\( k = 2 \)[/tex].
### Conclusion
Comparing this with the given options:
1. [tex]\( y = (x + 2)^2 - 4 \)[/tex]
2. [tex]\( y = (x + 2)^2 - 2 \)[/tex]
3. [tex]\( y = (x - 2)^2 + 2 \)[/tex]
4. [tex]\( y = (x - 2)^2 + 4 \)[/tex]
The correct vertex form of [tex]\( y = x^2 - 4x + 6 \)[/tex] is:
[tex]\[ y = (x - 2)^2 + 2 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = (x - 2)^2 + 2} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.