At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we need to determine the size of the square tiles that can be used to pave the entire rectangular courtyard without any gaps or overlaps, and then calculate the number of such tiles required.
1. Convert the dimensions to a consistent unit:
- The length of the courtyard is [tex]\(18 \, \text{m} \, 72 \, \text{cm}\)[/tex].
[tex]\[ 18 \, \text{meters} = 18 \times 100 \, \text{cm} = 1800 \, \text{cm} \][/tex]
- Adding the extra 72 cm:
[tex]\[ 1800 \, \text{cm} + 72 \, \text{cm} = 1872 \, \text{cm} \][/tex]
- The width of the courtyard is [tex]\(13 \, \text{m} \, 20 \, \text{cm}\)[/tex].
[tex]\[ 13 \, \text{meters} = 13 \times 100 \, \text{cm} = 1300 \, \text{cm} \][/tex]
- Adding the extra 20 cm:
[tex]\[ 1300 \, \text{cm} + 20 \, \text{cm} = 1320 \, \text{cm} \][/tex]
2. Determine the largest possible size of the square tile:
- The size of the largest possible square tile that can perfectly fit both dimensions can be found by calculating the Greatest Common Divisor (GCD) of the two lengths. The GCD of 1872 cm and 1320 cm is 24 cm.
3. Calculate the number of square tiles needed:
- The area of the courtyard is:
[tex]\[ 1872 \, \text{cm} \times 1320 \, \text{cm} = 2471040 \, \text{cm}^2 \][/tex]
- The area of each square tile (with side length of 24 cm) is:
[tex]\[ 24 \, \text{cm} \times 24 \, \text{cm} = 576 \, \text{cm}^2 \][/tex]
- The number of tiles needed to pave the courtyard is:
[tex]\[ \frac{2471040 \, \text{cm}^2}{576 \, \text{cm}^2} = 4290 \][/tex]
Therefore, the least possible number of square tiles required to pave the courtyard is [tex]\(4290\)[/tex].
1. Convert the dimensions to a consistent unit:
- The length of the courtyard is [tex]\(18 \, \text{m} \, 72 \, \text{cm}\)[/tex].
[tex]\[ 18 \, \text{meters} = 18 \times 100 \, \text{cm} = 1800 \, \text{cm} \][/tex]
- Adding the extra 72 cm:
[tex]\[ 1800 \, \text{cm} + 72 \, \text{cm} = 1872 \, \text{cm} \][/tex]
- The width of the courtyard is [tex]\(13 \, \text{m} \, 20 \, \text{cm}\)[/tex].
[tex]\[ 13 \, \text{meters} = 13 \times 100 \, \text{cm} = 1300 \, \text{cm} \][/tex]
- Adding the extra 20 cm:
[tex]\[ 1300 \, \text{cm} + 20 \, \text{cm} = 1320 \, \text{cm} \][/tex]
2. Determine the largest possible size of the square tile:
- The size of the largest possible square tile that can perfectly fit both dimensions can be found by calculating the Greatest Common Divisor (GCD) of the two lengths. The GCD of 1872 cm and 1320 cm is 24 cm.
3. Calculate the number of square tiles needed:
- The area of the courtyard is:
[tex]\[ 1872 \, \text{cm} \times 1320 \, \text{cm} = 2471040 \, \text{cm}^2 \][/tex]
- The area of each square tile (with side length of 24 cm) is:
[tex]\[ 24 \, \text{cm} \times 24 \, \text{cm} = 576 \, \text{cm}^2 \][/tex]
- The number of tiles needed to pave the courtyard is:
[tex]\[ \frac{2471040 \, \text{cm}^2}{576 \, \text{cm}^2} = 4290 \][/tex]
Therefore, the least possible number of square tiles required to pave the courtyard is [tex]\(4290\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.