At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we need to determine the size of the square tiles that can be used to pave the entire rectangular courtyard without any gaps or overlaps, and then calculate the number of such tiles required.
1. Convert the dimensions to a consistent unit:
- The length of the courtyard is [tex]\(18 \, \text{m} \, 72 \, \text{cm}\)[/tex].
[tex]\[ 18 \, \text{meters} = 18 \times 100 \, \text{cm} = 1800 \, \text{cm} \][/tex]
- Adding the extra 72 cm:
[tex]\[ 1800 \, \text{cm} + 72 \, \text{cm} = 1872 \, \text{cm} \][/tex]
- The width of the courtyard is [tex]\(13 \, \text{m} \, 20 \, \text{cm}\)[/tex].
[tex]\[ 13 \, \text{meters} = 13 \times 100 \, \text{cm} = 1300 \, \text{cm} \][/tex]
- Adding the extra 20 cm:
[tex]\[ 1300 \, \text{cm} + 20 \, \text{cm} = 1320 \, \text{cm} \][/tex]
2. Determine the largest possible size of the square tile:
- The size of the largest possible square tile that can perfectly fit both dimensions can be found by calculating the Greatest Common Divisor (GCD) of the two lengths. The GCD of 1872 cm and 1320 cm is 24 cm.
3. Calculate the number of square tiles needed:
- The area of the courtyard is:
[tex]\[ 1872 \, \text{cm} \times 1320 \, \text{cm} = 2471040 \, \text{cm}^2 \][/tex]
- The area of each square tile (with side length of 24 cm) is:
[tex]\[ 24 \, \text{cm} \times 24 \, \text{cm} = 576 \, \text{cm}^2 \][/tex]
- The number of tiles needed to pave the courtyard is:
[tex]\[ \frac{2471040 \, \text{cm}^2}{576 \, \text{cm}^2} = 4290 \][/tex]
Therefore, the least possible number of square tiles required to pave the courtyard is [tex]\(4290\)[/tex].
1. Convert the dimensions to a consistent unit:
- The length of the courtyard is [tex]\(18 \, \text{m} \, 72 \, \text{cm}\)[/tex].
[tex]\[ 18 \, \text{meters} = 18 \times 100 \, \text{cm} = 1800 \, \text{cm} \][/tex]
- Adding the extra 72 cm:
[tex]\[ 1800 \, \text{cm} + 72 \, \text{cm} = 1872 \, \text{cm} \][/tex]
- The width of the courtyard is [tex]\(13 \, \text{m} \, 20 \, \text{cm}\)[/tex].
[tex]\[ 13 \, \text{meters} = 13 \times 100 \, \text{cm} = 1300 \, \text{cm} \][/tex]
- Adding the extra 20 cm:
[tex]\[ 1300 \, \text{cm} + 20 \, \text{cm} = 1320 \, \text{cm} \][/tex]
2. Determine the largest possible size of the square tile:
- The size of the largest possible square tile that can perfectly fit both dimensions can be found by calculating the Greatest Common Divisor (GCD) of the two lengths. The GCD of 1872 cm and 1320 cm is 24 cm.
3. Calculate the number of square tiles needed:
- The area of the courtyard is:
[tex]\[ 1872 \, \text{cm} \times 1320 \, \text{cm} = 2471040 \, \text{cm}^2 \][/tex]
- The area of each square tile (with side length of 24 cm) is:
[tex]\[ 24 \, \text{cm} \times 24 \, \text{cm} = 576 \, \text{cm}^2 \][/tex]
- The number of tiles needed to pave the courtyard is:
[tex]\[ \frac{2471040 \, \text{cm}^2}{576 \, \text{cm}^2} = 4290 \][/tex]
Therefore, the least possible number of square tiles required to pave the courtyard is [tex]\(4290\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.