Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the final apportionment of the 13 legislative seats among the three states using the Hamilton method, follow these steps:
1. Calculate the Standard Quotas:
- State 1: [tex]\(2.67\)[/tex]
- State 2: [tex]\(6.92\)[/tex]
- State 3: [tex]\(4.17\)[/tex]
2. Calculate the Initial Apportionment:
Take the integer part of each standard quota:
- State 1: [tex]\( \text{floor}(2.67) = 2 \)[/tex]
- State 2: [tex]\( \text{floor}(6.92) = 6 \)[/tex]
- State 3: [tex]\( \text{floor}(4.17) = 4 \)[/tex]
Summing these initial apportionments: [tex]\(2 + 6 + 4 = 12\)[/tex] seats.
3. Determine Remaining Seats to Distribute:
The total number of seats available is 13. After the initial apportionment, 12 seats have been allocated, so there is 1 seat remaining to be distributed.
4. Distribute Remaining Seats Based on Fractional Parts:
- State 1: [tex]\(2.67 - 2 = 0.67\)[/tex]
- State 2: [tex]\(6.92 - 6 = 0.92\)[/tex]
- State 3: [tex]\(4.17 - 4 = 0.17\)[/tex]
Identify the state with the largest fractional part:
- State 2 has the largest fractional part of [tex]\(0.92\)[/tex].
Allocate the remaining seat to State 2.
5. Calculate the Final Apportionment:
Add the additional seats to the initial apportionment:
- State 1: [tex]\( 2 \)[/tex]
- State 2: [tex]\( 6 + 1 = 7 \)[/tex]
- State 3: [tex]\( 4 \)[/tex]
Thus, the final apportionment using the Hamilton method is:
[tex]\[ \boxed{(2,7,4)} \][/tex]
So, the correct answer is:
(A) [tex]\(2, 7, 4\)[/tex]
1. Calculate the Standard Quotas:
- State 1: [tex]\(2.67\)[/tex]
- State 2: [tex]\(6.92\)[/tex]
- State 3: [tex]\(4.17\)[/tex]
2. Calculate the Initial Apportionment:
Take the integer part of each standard quota:
- State 1: [tex]\( \text{floor}(2.67) = 2 \)[/tex]
- State 2: [tex]\( \text{floor}(6.92) = 6 \)[/tex]
- State 3: [tex]\( \text{floor}(4.17) = 4 \)[/tex]
Summing these initial apportionments: [tex]\(2 + 6 + 4 = 12\)[/tex] seats.
3. Determine Remaining Seats to Distribute:
The total number of seats available is 13. After the initial apportionment, 12 seats have been allocated, so there is 1 seat remaining to be distributed.
4. Distribute Remaining Seats Based on Fractional Parts:
- State 1: [tex]\(2.67 - 2 = 0.67\)[/tex]
- State 2: [tex]\(6.92 - 6 = 0.92\)[/tex]
- State 3: [tex]\(4.17 - 4 = 0.17\)[/tex]
Identify the state with the largest fractional part:
- State 2 has the largest fractional part of [tex]\(0.92\)[/tex].
Allocate the remaining seat to State 2.
5. Calculate the Final Apportionment:
Add the additional seats to the initial apportionment:
- State 1: [tex]\( 2 \)[/tex]
- State 2: [tex]\( 6 + 1 = 7 \)[/tex]
- State 3: [tex]\( 4 \)[/tex]
Thus, the final apportionment using the Hamilton method is:
[tex]\[ \boxed{(2,7,4)} \][/tex]
So, the correct answer is:
(A) [tex]\(2, 7, 4\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.