Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the given simultaneous equations, let's go through the problem step-by-step.
### Given Equations:
1. [tex]\( y^2 + xy + 3 = 0 \)[/tex]
2. [tex]\( x = 6y + 5 \)[/tex]
### Part (a) Show that [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex]
#### Step 1: Substitute [tex]\( x \)[/tex] from the second equation into the first equation.
Given [tex]\( x = 6y + 5 \)[/tex], replace [tex]\( x \)[/tex] in the first equation:
[tex]\[ y^2 + (6y + 5)y + 3 = 0 \][/tex]
#### Step 2: Simplify the equation.
[tex]\[ y^2 + 6y^2 + 5y + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
This demonstrates that indeed the substitution results in the equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex], as requested.
### Part (b) Determine the number of solutions to the simultaneous equations.
#### Step 1: Solve the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex].
To determine the solutions for [tex]\( y \)[/tex], we solve the quadratic equation:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
#### Step 2: Use the quadratic formula [tex]\( y = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \)[/tex], where [tex]\( a = 7 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 3 \)[/tex].
The discriminant [tex]\( \Delta \)[/tex] is calculated as follows:
[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4 \cdot 7 \cdot 3 = 25 - 84 = -59 \][/tex]
Since the discriminant is negative ([tex]\( -59 \)[/tex]), the quadratic equation has two complex (imaginary) roots.
The solutions for [tex]\( y \)[/tex] are:
[tex]\[ y = \frac{{-5 \pm \sqrt{-59}}}{14} = \frac{{-5 \pm \sqrt{59}i}}{14} \][/tex]
#### Step 3: Find the corresponding [tex]\( x \)[/tex] values for each solution of [tex]\( y \)[/tex].
Using the equation [tex]\( x = 6y + 5 \)[/tex]:
For [tex]\( y_1 = \frac{{-5 - \sqrt{59}i}}{14} \)[/tex]:
[tex]\[ x_1 = 6 \left( \frac{{-5 - \sqrt{59}i}}{14} \right) + 5 = \frac{{-30 - 6 \sqrt{59}i}}{14} + 5 = \frac{{-30 - 6 \sqrt{59}i + 70}}{14} = \frac{{40 - 6 \sqrt{59}i}}{14} = \frac{{20 - 3 \sqrt{59}i}}{7} \][/tex]
For [tex]\( y_2 = \frac{{-5 + \sqrt{59}i}}{14} \)[/tex]:
[tex]\[ x_2 = 6 \left( \frac{{-5 + \sqrt{59}i}}{14} \right) + 5 = \frac{{-30 + 6 \sqrt{59}i}}{14} + 5 = \frac{{-30 + 6 \sqrt{59}i + 70}}{14} = \frac{{40 + 6 \sqrt{59}i}}{14} = \frac{{20 + 3 \sqrt{59}i}}{7} \][/tex]
Thus, the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] has exactly two complex solutions for [tex]\( y \)[/tex], and correspondingly, there are two complex solutions for [tex]\( x \)[/tex].
### Conclusion
The simultaneous equations have two complex solutions for the pairs [tex]\((x, y)\)[/tex]:
1. [tex]\( y = \frac{{-5 - \sqrt{59}i}}{14} \)[/tex] and [tex]\( x = \frac{{20 - 3 \sqrt{59}i}}{7} \)[/tex]
2. [tex]\( y = \frac{{-5 + \sqrt{59}i}}{14} \)[/tex] and [tex]\( x = \frac{{20 + 3 \sqrt{59}i}}{7} \)[/tex]
### Given Equations:
1. [tex]\( y^2 + xy + 3 = 0 \)[/tex]
2. [tex]\( x = 6y + 5 \)[/tex]
### Part (a) Show that [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex]
#### Step 1: Substitute [tex]\( x \)[/tex] from the second equation into the first equation.
Given [tex]\( x = 6y + 5 \)[/tex], replace [tex]\( x \)[/tex] in the first equation:
[tex]\[ y^2 + (6y + 5)y + 3 = 0 \][/tex]
#### Step 2: Simplify the equation.
[tex]\[ y^2 + 6y^2 + 5y + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
This demonstrates that indeed the substitution results in the equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex], as requested.
### Part (b) Determine the number of solutions to the simultaneous equations.
#### Step 1: Solve the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex].
To determine the solutions for [tex]\( y \)[/tex], we solve the quadratic equation:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
#### Step 2: Use the quadratic formula [tex]\( y = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \)[/tex], where [tex]\( a = 7 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 3 \)[/tex].
The discriminant [tex]\( \Delta \)[/tex] is calculated as follows:
[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4 \cdot 7 \cdot 3 = 25 - 84 = -59 \][/tex]
Since the discriminant is negative ([tex]\( -59 \)[/tex]), the quadratic equation has two complex (imaginary) roots.
The solutions for [tex]\( y \)[/tex] are:
[tex]\[ y = \frac{{-5 \pm \sqrt{-59}}}{14} = \frac{{-5 \pm \sqrt{59}i}}{14} \][/tex]
#### Step 3: Find the corresponding [tex]\( x \)[/tex] values for each solution of [tex]\( y \)[/tex].
Using the equation [tex]\( x = 6y + 5 \)[/tex]:
For [tex]\( y_1 = \frac{{-5 - \sqrt{59}i}}{14} \)[/tex]:
[tex]\[ x_1 = 6 \left( \frac{{-5 - \sqrt{59}i}}{14} \right) + 5 = \frac{{-30 - 6 \sqrt{59}i}}{14} + 5 = \frac{{-30 - 6 \sqrt{59}i + 70}}{14} = \frac{{40 - 6 \sqrt{59}i}}{14} = \frac{{20 - 3 \sqrt{59}i}}{7} \][/tex]
For [tex]\( y_2 = \frac{{-5 + \sqrt{59}i}}{14} \)[/tex]:
[tex]\[ x_2 = 6 \left( \frac{{-5 + \sqrt{59}i}}{14} \right) + 5 = \frac{{-30 + 6 \sqrt{59}i}}{14} + 5 = \frac{{-30 + 6 \sqrt{59}i + 70}}{14} = \frac{{40 + 6 \sqrt{59}i}}{14} = \frac{{20 + 3 \sqrt{59}i}}{7} \][/tex]
Thus, the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] has exactly two complex solutions for [tex]\( y \)[/tex], and correspondingly, there are two complex solutions for [tex]\( x \)[/tex].
### Conclusion
The simultaneous equations have two complex solutions for the pairs [tex]\((x, y)\)[/tex]:
1. [tex]\( y = \frac{{-5 - \sqrt{59}i}}{14} \)[/tex] and [tex]\( x = \frac{{20 - 3 \sqrt{59}i}}{7} \)[/tex]
2. [tex]\( y = \frac{{-5 + \sqrt{59}i}}{14} \)[/tex] and [tex]\( x = \frac{{20 + 3 \sqrt{59}i}}{7} \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.