Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the apportionment of fourteen legislative seats among the three states using the Huntington-Hill method, we follow these steps:
1. Initial Allocation:
- Allocate to each state the integer part of their standard quota.
- State 1: The standard quota is 2.67. The integer part is 2.
- State 2: The standard quota is 6.92. The integer part is 6.
- State 3: The standard quota is 4.17. The integer part is 4.
2. Calculate Initial Seats:
- State 1: 2 seats
- State 2: 6 seats
- State 3: 4 seats
- Total allocated seats initially: [tex]\(2 + 6 + 4 = 12\)[/tex]
3. Remaining Seats to Allocate:
- Total seats to allocate: 14
- Seats already allocated: 12
- Remaining seats: [tex]\(14 - 12 = 2\)[/tex]
4. Ratios for Huntington-Hill Method:
- Compute the ratios as follows:
- For each state, the ratio is [tex]\(\frac{\text{standard quota}}{\sqrt{\text{seats} \times (\text{seats} + 1)}}\)[/tex].
- State 1: [tex]\(\frac{2.67}{\sqrt{2 \times 3}} = \frac{2.67}{\sqrt{6}}\)[/tex]
- State 2: [tex]\(\frac{6.92}{\sqrt{6 \times 7}} = \frac{6.92}{\sqrt{42}}\)[/tex]
- State 3: [tex]\(\frac{4.17}{\sqrt{4 \times 5}} = \frac{4.17}{\sqrt{20}}\)[/tex]
5. Allocate Remaining Seats:
- We need to allocate the 2 remaining seats to the states with the highest ratios.
- Check the ratios calculated to decide which state gets the next seat.
- Allocate one seat at a time and update the ratios accordingly.
Following this step-by-step procedure, the final allocation of seats results in:
- State 1 ends up with 3 seats.
- State 2 ends up with 7 seats.
- State 3 ends up with 4 seats.
Thus, the apportionment is [tex]\((3, 7, 4)\)[/tex].
This matches option (C) in the provided options:
(C) [tex]\(3, 7, 4) So, the correct answer is: (C) \(3, 7, 4\)[/tex]
1. Initial Allocation:
- Allocate to each state the integer part of their standard quota.
- State 1: The standard quota is 2.67. The integer part is 2.
- State 2: The standard quota is 6.92. The integer part is 6.
- State 3: The standard quota is 4.17. The integer part is 4.
2. Calculate Initial Seats:
- State 1: 2 seats
- State 2: 6 seats
- State 3: 4 seats
- Total allocated seats initially: [tex]\(2 + 6 + 4 = 12\)[/tex]
3. Remaining Seats to Allocate:
- Total seats to allocate: 14
- Seats already allocated: 12
- Remaining seats: [tex]\(14 - 12 = 2\)[/tex]
4. Ratios for Huntington-Hill Method:
- Compute the ratios as follows:
- For each state, the ratio is [tex]\(\frac{\text{standard quota}}{\sqrt{\text{seats} \times (\text{seats} + 1)}}\)[/tex].
- State 1: [tex]\(\frac{2.67}{\sqrt{2 \times 3}} = \frac{2.67}{\sqrt{6}}\)[/tex]
- State 2: [tex]\(\frac{6.92}{\sqrt{6 \times 7}} = \frac{6.92}{\sqrt{42}}\)[/tex]
- State 3: [tex]\(\frac{4.17}{\sqrt{4 \times 5}} = \frac{4.17}{\sqrt{20}}\)[/tex]
5. Allocate Remaining Seats:
- We need to allocate the 2 remaining seats to the states with the highest ratios.
- Check the ratios calculated to decide which state gets the next seat.
- Allocate one seat at a time and update the ratios accordingly.
Following this step-by-step procedure, the final allocation of seats results in:
- State 1 ends up with 3 seats.
- State 2 ends up with 7 seats.
- State 3 ends up with 4 seats.
Thus, the apportionment is [tex]\((3, 7, 4)\)[/tex].
This matches option (C) in the provided options:
(C) [tex]\(3, 7, 4) So, the correct answer is: (C) \(3, 7, 4\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.