Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To rewrite the quadratic function [tex]\( y = 2x^2 - 4x + 12 \)[/tex] in vertex form, we can follow these steps:
1. Identify the coefficient of [tex]\( x^2 \)[/tex]: The coefficient of [tex]\( x^2 \)[/tex] in the given quadratic equation is 2.
2. Complete the square: To complete the square, we need to focus on the quadratic and linear terms [tex]\( 2x^2 - 4x \)[/tex].
a. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the quadratic and linear terms:
[tex]\[ y = 2(x^2 - 2x) + 12 \][/tex]
b. Complete the square inside the parentheses. To complete the square, take the coefficient of [tex]\( x \)[/tex] (which is -2), divide it by 2, and then square it:
[tex]\[ \left(\frac{-2}{2}\right)^2 = 1 \][/tex]
c. Add and subtract this square inside the parentheses:
[tex]\[ y = 2(x^2 - 2x + 1 - 1) + 12 \][/tex]
[tex]\[ y = 2((x - 1)^2 - 1) + 12 \][/tex]
d. Distribute the 2 and combine like terms:
[tex]\[ y = 2(x - 1)^2 - 2 + 12 \][/tex]
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
3. Write the equation in vertex form: The quadratic equation is now in vertex form:
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
The vertex form of the given quadratic function is:
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
Therefore, among the given options, the correct form is:
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
1. Identify the coefficient of [tex]\( x^2 \)[/tex]: The coefficient of [tex]\( x^2 \)[/tex] in the given quadratic equation is 2.
2. Complete the square: To complete the square, we need to focus on the quadratic and linear terms [tex]\( 2x^2 - 4x \)[/tex].
a. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the quadratic and linear terms:
[tex]\[ y = 2(x^2 - 2x) + 12 \][/tex]
b. Complete the square inside the parentheses. To complete the square, take the coefficient of [tex]\( x \)[/tex] (which is -2), divide it by 2, and then square it:
[tex]\[ \left(\frac{-2}{2}\right)^2 = 1 \][/tex]
c. Add and subtract this square inside the parentheses:
[tex]\[ y = 2(x^2 - 2x + 1 - 1) + 12 \][/tex]
[tex]\[ y = 2((x - 1)^2 - 1) + 12 \][/tex]
d. Distribute the 2 and combine like terms:
[tex]\[ y = 2(x - 1)^2 - 2 + 12 \][/tex]
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
3. Write the equation in vertex form: The quadratic equation is now in vertex form:
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
The vertex form of the given quadratic function is:
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
Therefore, among the given options, the correct form is:
[tex]\[ y = 2(x - 1)^2 + 10 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.