Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To sketch the graph of the equation [tex]\( y = (x-1)^2 + 2 \)[/tex] and identify its axis of symmetry, let's follow these steps:
1. Identify the Form of the Equation:
- The equation [tex]\( y = (x-1)^2 + 2 \)[/tex] is in the standard form of a parabola, [tex]\( y = a(x - h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Determine the Vertex:
- In the given equation, [tex]\( h = 1 \)[/tex] and [tex]\( k = 2 \)[/tex]. Therefore, the vertex of the parabola is at the point [tex]\((1, 2)\)[/tex].
3. Determine the Axis of Symmetry:
- The axis of symmetry for a parabola in the form [tex]\( y = a(x - h)^2 + k \)[/tex] is the vertical line [tex]\( x = h \)[/tex]. In this case, [tex]\( h = 1 \)[/tex].
- Thus, the axis of symmetry is [tex]\( x = 1 \)[/tex].
4. Sketch the Graph:
- Plot the vertex [tex]\((1, 2)\)[/tex] on the coordinate plane.
- Since the coefficient [tex]\( a \)[/tex] in [tex]\( y = a(x - h)^2 + k \)[/tex] is positive, the parabola opens upwards.
- Draw a symmetric parabola with its vertex at [tex]\((1, 2)\)[/tex] and opening upwards.
5. Ensure All Details are Included:
- The vertex [tex]\((1, 2)\)[/tex] is the highest or lowest point on the graph, namely the lowest because the parabola opens upwards.
- The parabola is symmetric about the vertical line [tex]\( x = 1 \)[/tex], i.e., for every point [tex]\( (x, y) \)[/tex] on one side of the axis of symmetry there is a corresponding point [tex]\( (2 - x, y) \)[/tex] on the other side.
6. Identify the Correct Option:
- Given the choices for the axis of symmetry are [tex]\( x = 1 \)[/tex], [tex]\( x = 2 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = -2 \)[/tex]:
- As we have determined, the correct axis of symmetry is [tex]\( x = 1 \)[/tex].
Therefore, the axis of symmetry for the graph of [tex]\( y = (x-1)^2 + 2 \)[/tex] is [tex]\( x = 1 \)[/tex].
1. Identify the Form of the Equation:
- The equation [tex]\( y = (x-1)^2 + 2 \)[/tex] is in the standard form of a parabola, [tex]\( y = a(x - h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Determine the Vertex:
- In the given equation, [tex]\( h = 1 \)[/tex] and [tex]\( k = 2 \)[/tex]. Therefore, the vertex of the parabola is at the point [tex]\((1, 2)\)[/tex].
3. Determine the Axis of Symmetry:
- The axis of symmetry for a parabola in the form [tex]\( y = a(x - h)^2 + k \)[/tex] is the vertical line [tex]\( x = h \)[/tex]. In this case, [tex]\( h = 1 \)[/tex].
- Thus, the axis of symmetry is [tex]\( x = 1 \)[/tex].
4. Sketch the Graph:
- Plot the vertex [tex]\((1, 2)\)[/tex] on the coordinate plane.
- Since the coefficient [tex]\( a \)[/tex] in [tex]\( y = a(x - h)^2 + k \)[/tex] is positive, the parabola opens upwards.
- Draw a symmetric parabola with its vertex at [tex]\((1, 2)\)[/tex] and opening upwards.
5. Ensure All Details are Included:
- The vertex [tex]\((1, 2)\)[/tex] is the highest or lowest point on the graph, namely the lowest because the parabola opens upwards.
- The parabola is symmetric about the vertical line [tex]\( x = 1 \)[/tex], i.e., for every point [tex]\( (x, y) \)[/tex] on one side of the axis of symmetry there is a corresponding point [tex]\( (2 - x, y) \)[/tex] on the other side.
6. Identify the Correct Option:
- Given the choices for the axis of symmetry are [tex]\( x = 1 \)[/tex], [tex]\( x = 2 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = -2 \)[/tex]:
- As we have determined, the correct axis of symmetry is [tex]\( x = 1 \)[/tex].
Therefore, the axis of symmetry for the graph of [tex]\( y = (x-1)^2 + 2 \)[/tex] is [tex]\( x = 1 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.