Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's break down how you can express the solution to the inequality [tex]\(x > 1\)[/tex] using set-builder notation in a detailed, step-by-step manner.
1. Identify the Inequality:
The given inequality is [tex]\(x > 1\)[/tex], which tells us that we are looking for all values of [tex]\(x\)[/tex] that are greater than 1.
2. Understand Set-Builder Notation:
Set-builder notation is a way of specifying a set by stating the properties that its members must satisfy. It is usually written in the format:
[tex]\[ \{ \text{variable} \mid \text{condition} \} \][/tex]
where the vertical bar [tex]\( \mid \)[/tex] can be read as "such that," and the condition is a characteristic that defines the elements of the set.
3. Construct the Set-Builder Notation:
For the inequality [tex]\(x > 1\)[/tex], we want to denote the set of all [tex]\(x\)[/tex] such that [tex]\(x\)[/tex] is greater than 1. In set-builder notation, this is written as:
[tex]\[ \{ x \mid x > 1 \} \][/tex]
4. Interpret the Notation:
The set-builder notation [tex]\(\{ x \mid x > 1 \}\)[/tex] reads as "the set of all [tex]\(x\)[/tex] such that [tex]\(x\)[/tex] is greater than 1." This succinctly captures the solution to the inequality.
Combining all these steps, the solution to the given inequality [tex]\(x > 1\)[/tex] in set-builder notation is:
[tex]\[ \{ x \mid x > 1 \} \][/tex]
1. Identify the Inequality:
The given inequality is [tex]\(x > 1\)[/tex], which tells us that we are looking for all values of [tex]\(x\)[/tex] that are greater than 1.
2. Understand Set-Builder Notation:
Set-builder notation is a way of specifying a set by stating the properties that its members must satisfy. It is usually written in the format:
[tex]\[ \{ \text{variable} \mid \text{condition} \} \][/tex]
where the vertical bar [tex]\( \mid \)[/tex] can be read as "such that," and the condition is a characteristic that defines the elements of the set.
3. Construct the Set-Builder Notation:
For the inequality [tex]\(x > 1\)[/tex], we want to denote the set of all [tex]\(x\)[/tex] such that [tex]\(x\)[/tex] is greater than 1. In set-builder notation, this is written as:
[tex]\[ \{ x \mid x > 1 \} \][/tex]
4. Interpret the Notation:
The set-builder notation [tex]\(\{ x \mid x > 1 \}\)[/tex] reads as "the set of all [tex]\(x\)[/tex] such that [tex]\(x\)[/tex] is greater than 1." This succinctly captures the solution to the inequality.
Combining all these steps, the solution to the given inequality [tex]\(x > 1\)[/tex] in set-builder notation is:
[tex]\[ \{ x \mid x > 1 \} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.