Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the given equation step-by-step to find the value of [tex]\( x \)[/tex]:
Given equation:
[tex]\[ 1 + 2 e^{x+1} = 9 \][/tex]
1. Start by isolating the exponential term. Subtract 1 from both sides:
[tex]\[ 2 e^{x+1} = 8 \][/tex]
2. Divide both sides by 2 to further isolate the exponential component:
[tex]\[ e^{x+1} = 4 \][/tex]
3. To solve for [tex]\( x \)[/tex], take the natural logarithm (ln) of both sides. The natural logarithm of an exponential function simplifies nicely:
[tex]\[ \ln(e^{x+1}) = \ln(4) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex]:
[tex]\[ x + 1 = \ln(4) \][/tex]
4. Finally, solve for [tex]\( x \)[/tex] by subtracting 1 from both sides:
[tex]\[ x = \ln(4) - 1 \][/tex]
Therefore, the correct value of [tex]\( x \)[/tex] is:
[tex]\[ x = \ln(4) - 1 \][/tex]
Among the provided options, the correct option is:
[tex]\[ x = \ln 4 - 1 \][/tex]
The numerical evaluation of this expression is approximately [tex]\( 0.3862943611198906 \)[/tex], which confirms the solution.
Thus, the value of [tex]\( x \)[/tex] in the equation is [tex]\( \ln 4 - 1 \)[/tex], corresponding to the approximate value of [tex]\( 0.3862943611198906 \)[/tex].
Given equation:
[tex]\[ 1 + 2 e^{x+1} = 9 \][/tex]
1. Start by isolating the exponential term. Subtract 1 from both sides:
[tex]\[ 2 e^{x+1} = 8 \][/tex]
2. Divide both sides by 2 to further isolate the exponential component:
[tex]\[ e^{x+1} = 4 \][/tex]
3. To solve for [tex]\( x \)[/tex], take the natural logarithm (ln) of both sides. The natural logarithm of an exponential function simplifies nicely:
[tex]\[ \ln(e^{x+1}) = \ln(4) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex]:
[tex]\[ x + 1 = \ln(4) \][/tex]
4. Finally, solve for [tex]\( x \)[/tex] by subtracting 1 from both sides:
[tex]\[ x = \ln(4) - 1 \][/tex]
Therefore, the correct value of [tex]\( x \)[/tex] is:
[tex]\[ x = \ln(4) - 1 \][/tex]
Among the provided options, the correct option is:
[tex]\[ x = \ln 4 - 1 \][/tex]
The numerical evaluation of this expression is approximately [tex]\( 0.3862943611198906 \)[/tex], which confirms the solution.
Thus, the value of [tex]\( x \)[/tex] in the equation is [tex]\( \ln 4 - 1 \)[/tex], corresponding to the approximate value of [tex]\( 0.3862943611198906 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.