Answered

Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Color-deficient vision is a sex-linked recessive trait in humans. Parents with the following genotypes have a child:

[tex]\( X^R X^r \times X^R Y \)[/tex]

What is the probability that the child will not have color-deficient vision?

A. 0.25
B. 0.50
C. 0.75
D. 1.00


Sagot :

To determine the probability that a child will not have color-deficient vision, we need to consider the genetic crosses and the resulting possible genotypes of the offspring.

The genotypes for the parents are:
- Mother: [tex]\(X^R X^d\)[/tex] (one normal allele [tex]\(X^R\)[/tex] and one color-deficient allele [tex]\(X^d\)[/tex])
- Father: [tex]\(X^R Y\)[/tex] (one normal allele [tex]\(X^R\)[/tex] on the X chromosome and a Y chromosome which does not carry any alleles for this trait)

When these two parents produce offspring, the possible combinations of alleles are:
1. [tex]\(X^R\)[/tex] from the mother and [tex]\(X^R\)[/tex] from the father: [tex]\(X^R X^R\)[/tex] (normal vision female)
2. [tex]\(X^R\)[/tex] from the mother and [tex]\(Y\)[/tex] from the father: [tex]\(X^R Y\)[/tex] (normal vision male)
3. [tex]\(X^d\)[/tex] from the mother and [tex]\(X^R\)[/tex] from the father: [tex]\(X^d X^R\)[/tex] (normal vision female, though a carrier for the color-deficiency trait)
4. [tex]\(X^d\)[/tex] from the mother and [tex]\(Y\)[/tex] from the father: [tex]\(X^d Y\)[/tex] (color-deficient vision male)

Let's list these offspring possibilities:
1. [tex]\(X^R X^R\)[/tex] – normal vision female
2. [tex]\(X^R Y\)[/tex] – normal vision male
3. [tex]\(X^d X^R\)[/tex] – normal vision female (carrier)
4. [tex]\(X^d Y\)[/tex] – color-deficient male

To find the probability of having a child without color-deficient vision, we count the number of genotypes that result in normal vision:
1. [tex]\(X^R X^R\)[/tex] – normal vision female
2. [tex]\(X^R Y\)[/tex] – normal vision male
3. [tex]\(X^d X^R\)[/tex] – normal vision female

Out of the four possible genotypes, three result in normal vision. Only one genotype ([tex]\(X^d Y\)[/tex]) results in color-deficient vision.

Hence, the probability of the child not having color-deficient vision is:
[tex]\[ \frac{\text{Number of normal vision genotypes}}{\text{Total number of possible genotypes}} = \frac{3}{4} = 1.00 \][/tex]

So, the answer is:
D. 1.00
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.