Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equation represents a vertical stretch of the parent function [tex]\( f(x)=x^2 \)[/tex], let's examine each option by evaluating them at [tex]\( x = 1 \)[/tex].
1. Option [tex]\( y = 4x^2 \)[/tex]:
[tex]\[ y = 4 \cdot (1)^2 = 4 \][/tex]
This equation multiplies the original parent function [tex]\( x^2 \)[/tex] by 4, making the graph steeper. Hence, it represents a vertical stretch.
2. Option [tex]\( y = \frac{1}{4} + x^2 \)[/tex]:
[tex]\[ y = \frac{1}{4} + (1)^2 = \frac{1}{4} + 1 = 1.25 \][/tex]
This equation adds a constant to the parent function [tex]\( x^2 \)[/tex] which translates the graph vertically but does not stretch it.
3. Option [tex]\( y = \left(\frac{1}{4}x\right)^2 \)[/tex]:
[tex]\[ y = \left(\frac{1}{4} \cdot 1\right)^2 = \left(\frac{1}{4}\right)^2 = 0.0625 \][/tex]
This equation compresses the graph horizontally by a factor of 4 (since the x-term is multiplied by [tex]\( \frac{1}{4} \)[/tex]) and then squares the result. This does not represent a vertical stretch.
4. Option [tex]\( y = x^2 - 4 \)[/tex]:
[tex]\[ y = (1)^2 - 4 = 1 - 4 = -3 \][/tex]
This equation subtracts a constant from the parent function [tex]\( x^2 \)[/tex], which translates the graph downward but does not change its shape in terms of stretching.
Therefore, the equation that represents a vertical stretch of the parent function [tex]\( f(x) = x^2 \)[/tex] is [tex]\( y = 4x^2 \)[/tex].
Hence, the correct choice is:
[tex]\( y = 4x^2 \)[/tex].
1. Option [tex]\( y = 4x^2 \)[/tex]:
[tex]\[ y = 4 \cdot (1)^2 = 4 \][/tex]
This equation multiplies the original parent function [tex]\( x^2 \)[/tex] by 4, making the graph steeper. Hence, it represents a vertical stretch.
2. Option [tex]\( y = \frac{1}{4} + x^2 \)[/tex]:
[tex]\[ y = \frac{1}{4} + (1)^2 = \frac{1}{4} + 1 = 1.25 \][/tex]
This equation adds a constant to the parent function [tex]\( x^2 \)[/tex] which translates the graph vertically but does not stretch it.
3. Option [tex]\( y = \left(\frac{1}{4}x\right)^2 \)[/tex]:
[tex]\[ y = \left(\frac{1}{4} \cdot 1\right)^2 = \left(\frac{1}{4}\right)^2 = 0.0625 \][/tex]
This equation compresses the graph horizontally by a factor of 4 (since the x-term is multiplied by [tex]\( \frac{1}{4} \)[/tex]) and then squares the result. This does not represent a vertical stretch.
4. Option [tex]\( y = x^2 - 4 \)[/tex]:
[tex]\[ y = (1)^2 - 4 = 1 - 4 = -3 \][/tex]
This equation subtracts a constant from the parent function [tex]\( x^2 \)[/tex], which translates the graph downward but does not change its shape in terms of stretching.
Therefore, the equation that represents a vertical stretch of the parent function [tex]\( f(x) = x^2 \)[/tex] is [tex]\( y = 4x^2 \)[/tex].
Hence, the correct choice is:
[tex]\( y = 4x^2 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.