At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which equation represents a vertical stretch of the parent function [tex]\( f(x)=x^2 \)[/tex], let's examine each option by evaluating them at [tex]\( x = 1 \)[/tex].
1. Option [tex]\( y = 4x^2 \)[/tex]:
[tex]\[ y = 4 \cdot (1)^2 = 4 \][/tex]
This equation multiplies the original parent function [tex]\( x^2 \)[/tex] by 4, making the graph steeper. Hence, it represents a vertical stretch.
2. Option [tex]\( y = \frac{1}{4} + x^2 \)[/tex]:
[tex]\[ y = \frac{1}{4} + (1)^2 = \frac{1}{4} + 1 = 1.25 \][/tex]
This equation adds a constant to the parent function [tex]\( x^2 \)[/tex] which translates the graph vertically but does not stretch it.
3. Option [tex]\( y = \left(\frac{1}{4}x\right)^2 \)[/tex]:
[tex]\[ y = \left(\frac{1}{4} \cdot 1\right)^2 = \left(\frac{1}{4}\right)^2 = 0.0625 \][/tex]
This equation compresses the graph horizontally by a factor of 4 (since the x-term is multiplied by [tex]\( \frac{1}{4} \)[/tex]) and then squares the result. This does not represent a vertical stretch.
4. Option [tex]\( y = x^2 - 4 \)[/tex]:
[tex]\[ y = (1)^2 - 4 = 1 - 4 = -3 \][/tex]
This equation subtracts a constant from the parent function [tex]\( x^2 \)[/tex], which translates the graph downward but does not change its shape in terms of stretching.
Therefore, the equation that represents a vertical stretch of the parent function [tex]\( f(x) = x^2 \)[/tex] is [tex]\( y = 4x^2 \)[/tex].
Hence, the correct choice is:
[tex]\( y = 4x^2 \)[/tex].
1. Option [tex]\( y = 4x^2 \)[/tex]:
[tex]\[ y = 4 \cdot (1)^2 = 4 \][/tex]
This equation multiplies the original parent function [tex]\( x^2 \)[/tex] by 4, making the graph steeper. Hence, it represents a vertical stretch.
2. Option [tex]\( y = \frac{1}{4} + x^2 \)[/tex]:
[tex]\[ y = \frac{1}{4} + (1)^2 = \frac{1}{4} + 1 = 1.25 \][/tex]
This equation adds a constant to the parent function [tex]\( x^2 \)[/tex] which translates the graph vertically but does not stretch it.
3. Option [tex]\( y = \left(\frac{1}{4}x\right)^2 \)[/tex]:
[tex]\[ y = \left(\frac{1}{4} \cdot 1\right)^2 = \left(\frac{1}{4}\right)^2 = 0.0625 \][/tex]
This equation compresses the graph horizontally by a factor of 4 (since the x-term is multiplied by [tex]\( \frac{1}{4} \)[/tex]) and then squares the result. This does not represent a vertical stretch.
4. Option [tex]\( y = x^2 - 4 \)[/tex]:
[tex]\[ y = (1)^2 - 4 = 1 - 4 = -3 \][/tex]
This equation subtracts a constant from the parent function [tex]\( x^2 \)[/tex], which translates the graph downward but does not change its shape in terms of stretching.
Therefore, the equation that represents a vertical stretch of the parent function [tex]\( f(x) = x^2 \)[/tex] is [tex]\( y = 4x^2 \)[/tex].
Hence, the correct choice is:
[tex]\( y = 4x^2 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.