Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's simplify the expression [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] step-by-step.
1. Expression Breakdown:
We start with [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex].
2. Rewrite the Radicals as Exponents:
Recall that [tex]\(\sqrt[7]{x}\)[/tex] can be written as [tex]\(x^{1/7}\)[/tex]. Thus, we can rewrite the expression as:
[tex]\[ x^{1/7} \cdot 7^7 \cdot x^{1/7} \cdot x^{1/7} \][/tex]
3. Combine Like Terms:
By the properties of exponents, we can combine [tex]\(x^{1/7}\)[/tex] terms:
[tex]\[ x^{1/7} \cdot x^{1/7} \cdot x^{1/7} = x^{1/7 + 1/7 + 1/7} = x^{3/7} \][/tex]
4. Substitute and Simplify:
Replacing back into the original expression, we get:
[tex]\[ 7^7 \cdot x^{3/7} \][/tex]
5. Final Simplified Form:
The final simplified form of the expression [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] is:
[tex]\[ 823543 \cdot x^{3/7} \][/tex]
So, the simplified form of the given expression is:
[tex]\[ 823543 \cdot x^{3/7} \][/tex]
Therefore, the correct choice among the given options would be [tex]\(823543 \cdot x^{3/7}\)[/tex].
1. Expression Breakdown:
We start with [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex].
2. Rewrite the Radicals as Exponents:
Recall that [tex]\(\sqrt[7]{x}\)[/tex] can be written as [tex]\(x^{1/7}\)[/tex]. Thus, we can rewrite the expression as:
[tex]\[ x^{1/7} \cdot 7^7 \cdot x^{1/7} \cdot x^{1/7} \][/tex]
3. Combine Like Terms:
By the properties of exponents, we can combine [tex]\(x^{1/7}\)[/tex] terms:
[tex]\[ x^{1/7} \cdot x^{1/7} \cdot x^{1/7} = x^{1/7 + 1/7 + 1/7} = x^{3/7} \][/tex]
4. Substitute and Simplify:
Replacing back into the original expression, we get:
[tex]\[ 7^7 \cdot x^{3/7} \][/tex]
5. Final Simplified Form:
The final simplified form of the expression [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] is:
[tex]\[ 823543 \cdot x^{3/7} \][/tex]
So, the simplified form of the given expression is:
[tex]\[ 823543 \cdot x^{3/7} \][/tex]
Therefore, the correct choice among the given options would be [tex]\(823543 \cdot x^{3/7}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.