Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To tackle the problem, we need to use the concept of linear approximation to estimate [tex]\( \Delta y \)[/tex] when [tex]\( y = \sin(3x) \)[/tex] and [tex]\( \Delta x = 0.3 \)[/tex] at [tex]\( x = 0 \)[/tex].
Here are the detailed steps to solve this problem:
1. Expression for [tex]\( y \)[/tex] and its derivative:
[tex]\[ y = \sin(3x) \][/tex]
To use linear approximation, we need the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} [\sin(3x)] = 3 \cos(3x) \][/tex]
2. Initial values:
[tex]\[ x_{\text{initial}} = 0 \][/tex]
[tex]\[ \Delta x = 0.3 \][/tex]
3. Linear approximation formula:
The linear approximation formula around [tex]\( x = x_{\text{initial}} \)[/tex] is given by:
[tex]\[ \Delta y \approx \left. \frac{dy}{dx} \right|_{x=x_{\text{initial}}} \Delta x \][/tex]
4. Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ \left. \frac{dy}{dx} \right|_{x=0} = 3 \cos(3 \cdot 0) = 3 \cos(0) = 3 \cdot 1 = 3 \][/tex]
5. Estimate [tex]\( \Delta y \)[/tex] using the linear approximation:
[tex]\[ \Delta y \approx 3 \cdot \Delta x = 3 \cdot 0.3 = 0.9 \][/tex]
Therefore, the linear approximation estimate for [tex]\( \Delta y \)[/tex] is:
[tex]\[ \Delta y \approx 0.9 \][/tex]
6. Calculate the exact change in [tex]\( y \)[/tex]:
We need to find the exact value of [tex]\( \Delta y \)[/tex]:
[tex]\[ \Delta y_{\text{exact}} = y(x_{\text{initial}} + \Delta x) - y(x_{\text{initial}}) \][/tex]
Here, [tex]\( x_{\text{initial}} = 0 \)[/tex] and [tex]\( \Delta x = 0.3 \)[/tex], so:
[tex]\[ y(0.3) = \sin(3 \cdot 0.3) = \sin(0.9) \][/tex]
[tex]\[ y(0) = \sin(3 \cdot 0) = \sin(0) = 0 \][/tex]
Hence,
[tex]\[ \Delta y_{\text{exact}} = \sin(0.9) - \sin(0) = \sin(0.9) \][/tex]
7. Plugging in the value:
Using the computed numerical result (which we treat as an exact calculation):
[tex]\[ \Delta y_{\text{exact}} \approx 0.776772\][/tex]
8. Calculate the percentage error:
The percentage error is calculated as:
[tex]\[ \text{Percentage error} = \left| \frac{\Delta y_{\text{exact}} - \Delta y_{\text{approx}}}{\Delta y_{\text{exact}}} \right| \times 100 \][/tex]
Substituting the values:
[tex]\[ \text{Percentage error} = \left| \frac{0.776772 - 0.9}{0.776772} \right| \times 100 \approx 14.89\% \][/tex]
Thus, the final results are:
[tex]\[ \Delta y \approx 0.9 \][/tex]
[tex]\[ \text{Percentage error} \approx 14.89\% \][/tex]
Here are the detailed steps to solve this problem:
1. Expression for [tex]\( y \)[/tex] and its derivative:
[tex]\[ y = \sin(3x) \][/tex]
To use linear approximation, we need the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} [\sin(3x)] = 3 \cos(3x) \][/tex]
2. Initial values:
[tex]\[ x_{\text{initial}} = 0 \][/tex]
[tex]\[ \Delta x = 0.3 \][/tex]
3. Linear approximation formula:
The linear approximation formula around [tex]\( x = x_{\text{initial}} \)[/tex] is given by:
[tex]\[ \Delta y \approx \left. \frac{dy}{dx} \right|_{x=x_{\text{initial}}} \Delta x \][/tex]
4. Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ \left. \frac{dy}{dx} \right|_{x=0} = 3 \cos(3 \cdot 0) = 3 \cos(0) = 3 \cdot 1 = 3 \][/tex]
5. Estimate [tex]\( \Delta y \)[/tex] using the linear approximation:
[tex]\[ \Delta y \approx 3 \cdot \Delta x = 3 \cdot 0.3 = 0.9 \][/tex]
Therefore, the linear approximation estimate for [tex]\( \Delta y \)[/tex] is:
[tex]\[ \Delta y \approx 0.9 \][/tex]
6. Calculate the exact change in [tex]\( y \)[/tex]:
We need to find the exact value of [tex]\( \Delta y \)[/tex]:
[tex]\[ \Delta y_{\text{exact}} = y(x_{\text{initial}} + \Delta x) - y(x_{\text{initial}}) \][/tex]
Here, [tex]\( x_{\text{initial}} = 0 \)[/tex] and [tex]\( \Delta x = 0.3 \)[/tex], so:
[tex]\[ y(0.3) = \sin(3 \cdot 0.3) = \sin(0.9) \][/tex]
[tex]\[ y(0) = \sin(3 \cdot 0) = \sin(0) = 0 \][/tex]
Hence,
[tex]\[ \Delta y_{\text{exact}} = \sin(0.9) - \sin(0) = \sin(0.9) \][/tex]
7. Plugging in the value:
Using the computed numerical result (which we treat as an exact calculation):
[tex]\[ \Delta y_{\text{exact}} \approx 0.776772\][/tex]
8. Calculate the percentage error:
The percentage error is calculated as:
[tex]\[ \text{Percentage error} = \left| \frac{\Delta y_{\text{exact}} - \Delta y_{\text{approx}}}{\Delta y_{\text{exact}}} \right| \times 100 \][/tex]
Substituting the values:
[tex]\[ \text{Percentage error} = \left| \frac{0.776772 - 0.9}{0.776772} \right| \times 100 \approx 14.89\% \][/tex]
Thus, the final results are:
[tex]\[ \Delta y \approx 0.9 \][/tex]
[tex]\[ \text{Percentage error} \approx 14.89\% \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.