Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's break down each part of the problem step-by-step:
(A) Find all critical numbers of [tex]\( f \)[/tex].
To find the critical numbers, we first need to find the first derivative [tex]\( f'(x) \)[/tex] and then set it equal to zero and solve for [tex]\( x \)[/tex].
The first derivative of [tex]\( f(x) = 5x^6 - 2x^5 \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx}(5x^6 - 2x^5) = 30x^5 - 10x^4 = 10x^4(3x - 1) \][/tex]
Setting [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ 10x^4(3x - 1) = 0 \][/tex]
This implies [tex]\( x = 0 \)[/tex] or [tex]\( x = \frac{1}{3} \)[/tex].
So the critical numbers are:
[tex]\[ \text{Critical numbers } = [0, \frac{1}{3}] \][/tex]
(B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing.
To determine where [tex]\( f(x) \)[/tex] is increasing, we look at the intervals where the first derivative [tex]\( f'(x) \)[/tex] is positive.
Solving [tex]\( 30x^5 - 10x^4 > 0 \)[/tex]:
[tex]\[ 10x^4(3x - 1) > 0 \][/tex]
This inequality is satisfied when [tex]\( x > \frac{1}{3} \)[/tex], because [tex]\( x^4 \)[/tex] is always non-negative and is zero only at [tex]\( x = 0 \)[/tex].
Thus, [tex]\( f(x) \)[/tex] is increasing in the interval:
[tex]\[ \text{Increasing: } (\frac{1}{3}, \infty) \][/tex]
(C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing.
To determine where [tex]\( f(x) \)[/tex] is decreasing, we look at the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.
Solving [tex]\( 30x^5 - 10x^4 < 0 \)[/tex]:
[tex]\[ 10x^4(3x - 1) < 0 \][/tex]
This inequality is satisfied when [tex]\( 0 < x < \frac{1}{3} \)[/tex].
Thus, [tex]\( f(x) \)[/tex] is decreasing in the interval:
[tex]\[ \text{Decreasing: } (-\infty, 0) \cup (0, \frac{1}{3}) \][/tex]
(D) Find the [tex]\( x \)[/tex]-coordinates of all local maxima of [tex]\( f \)[/tex].
To find the local maxima, we check the second derivative [tex]\( f''(x) \)[/tex] at the critical points. If [tex]\( f''(x) < 0 \)[/tex] at a critical point, [tex]\( f(x) \)[/tex] has a local maximum there.
[tex]\[ f''(x) = \frac{d}{dx}(30x^5 - 10x^4) = 150x^4 - 40x^3 \][/tex]
[tex]\[ \text{Evaluating at } x = 0: \][/tex]
[tex]\[ f''(0) = 150(0)^4 - 40(0)^3 = 0 \][/tex]
[tex]\[ \text{Evaluating at } x = \frac{1}{3}: \][/tex]
[tex]\[ f''(\frac{1}{3}) = 150\left(\frac{1}{3}\right)^4 - 40\left(\frac{1}{3}\right)^3 = 150\left(\frac{1}{81}\right) - 40\left(\frac{1}{27}\right) = \frac{150}{81} - \frac{40}{27} = \frac{50}{27} - \frac{40}{27} = \frac{10}{27} > 0 \][/tex]
Thus, there are no local maxima:
[tex]\[ \text{x values of local maxima} = \text{NONE} \][/tex]
(E) Find the [tex]\( x \)[/tex]-coordinates of all local minima of [tex]\( f \)[/tex].
A local minimum occurs at a critical point where [tex]\( f''(x) > 0 \)[/tex].
From the calculation above, we find:
[tex]\[ f''(0) = 0 \][/tex]
[tex]\[ f''(\frac{1}{3}) = \frac{10}{27} > 0 \][/tex]
Thus, there is a local minimum at [tex]\( x = \frac{1}{3} \)[/tex]:
[tex]\[ \text{x values of local minima} = \frac{1}{3} \][/tex]
(F) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is concave up.
To determine concavity, we look at the second derivative [tex]\( f''(x) \)[/tex]. The function is concave up where [tex]\( f''(x) > 0 \)[/tex].
[tex]\[ 150x^4 - 40x^3 > 0 \][/tex]
Factoring out the common terms:
[tex]\[ 10x^3(15x - 4) > 0 \][/tex]
This inequality is satisfied when [tex]\( x < 0 \)[/tex] or [tex]\( x > \frac{4}{15} \)[/tex].
Thus, [tex]\( f(x) \)[/tex] is concave up in the intervals:
[tex]\[ \text{Concave up: } (-\infty, 0) \cup (\frac{4}{15}, \infty) \][/tex]
So, let's compile everything:
(A) Critical numbers = [tex]\( [0, \frac{1}{3}] \)[/tex]
(B) Increasing: [tex]\( (\frac{1}{3}, \infty) \)[/tex]
(C) Decreasing: [tex]\( (-\infty, 0) \cup (0, \frac{1}{3}) \)[/tex]
(D) [tex]\( x \)[/tex] values of local maxima = NONE
(E) [tex]\( x \)[/tex] values of local minima = [tex]\( \frac{1}{3} \)[/tex]
(F) Concave up = [tex]\( (-\infty, 0) \cup (\frac{4}{15}, \infty) \)[/tex]
(A) Find all critical numbers of [tex]\( f \)[/tex].
To find the critical numbers, we first need to find the first derivative [tex]\( f'(x) \)[/tex] and then set it equal to zero and solve for [tex]\( x \)[/tex].
The first derivative of [tex]\( f(x) = 5x^6 - 2x^5 \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx}(5x^6 - 2x^5) = 30x^5 - 10x^4 = 10x^4(3x - 1) \][/tex]
Setting [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ 10x^4(3x - 1) = 0 \][/tex]
This implies [tex]\( x = 0 \)[/tex] or [tex]\( x = \frac{1}{3} \)[/tex].
So the critical numbers are:
[tex]\[ \text{Critical numbers } = [0, \frac{1}{3}] \][/tex]
(B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing.
To determine where [tex]\( f(x) \)[/tex] is increasing, we look at the intervals where the first derivative [tex]\( f'(x) \)[/tex] is positive.
Solving [tex]\( 30x^5 - 10x^4 > 0 \)[/tex]:
[tex]\[ 10x^4(3x - 1) > 0 \][/tex]
This inequality is satisfied when [tex]\( x > \frac{1}{3} \)[/tex], because [tex]\( x^4 \)[/tex] is always non-negative and is zero only at [tex]\( x = 0 \)[/tex].
Thus, [tex]\( f(x) \)[/tex] is increasing in the interval:
[tex]\[ \text{Increasing: } (\frac{1}{3}, \infty) \][/tex]
(C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing.
To determine where [tex]\( f(x) \)[/tex] is decreasing, we look at the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.
Solving [tex]\( 30x^5 - 10x^4 < 0 \)[/tex]:
[tex]\[ 10x^4(3x - 1) < 0 \][/tex]
This inequality is satisfied when [tex]\( 0 < x < \frac{1}{3} \)[/tex].
Thus, [tex]\( f(x) \)[/tex] is decreasing in the interval:
[tex]\[ \text{Decreasing: } (-\infty, 0) \cup (0, \frac{1}{3}) \][/tex]
(D) Find the [tex]\( x \)[/tex]-coordinates of all local maxima of [tex]\( f \)[/tex].
To find the local maxima, we check the second derivative [tex]\( f''(x) \)[/tex] at the critical points. If [tex]\( f''(x) < 0 \)[/tex] at a critical point, [tex]\( f(x) \)[/tex] has a local maximum there.
[tex]\[ f''(x) = \frac{d}{dx}(30x^5 - 10x^4) = 150x^4 - 40x^3 \][/tex]
[tex]\[ \text{Evaluating at } x = 0: \][/tex]
[tex]\[ f''(0) = 150(0)^4 - 40(0)^3 = 0 \][/tex]
[tex]\[ \text{Evaluating at } x = \frac{1}{3}: \][/tex]
[tex]\[ f''(\frac{1}{3}) = 150\left(\frac{1}{3}\right)^4 - 40\left(\frac{1}{3}\right)^3 = 150\left(\frac{1}{81}\right) - 40\left(\frac{1}{27}\right) = \frac{150}{81} - \frac{40}{27} = \frac{50}{27} - \frac{40}{27} = \frac{10}{27} > 0 \][/tex]
Thus, there are no local maxima:
[tex]\[ \text{x values of local maxima} = \text{NONE} \][/tex]
(E) Find the [tex]\( x \)[/tex]-coordinates of all local minima of [tex]\( f \)[/tex].
A local minimum occurs at a critical point where [tex]\( f''(x) > 0 \)[/tex].
From the calculation above, we find:
[tex]\[ f''(0) = 0 \][/tex]
[tex]\[ f''(\frac{1}{3}) = \frac{10}{27} > 0 \][/tex]
Thus, there is a local minimum at [tex]\( x = \frac{1}{3} \)[/tex]:
[tex]\[ \text{x values of local minima} = \frac{1}{3} \][/tex]
(F) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is concave up.
To determine concavity, we look at the second derivative [tex]\( f''(x) \)[/tex]. The function is concave up where [tex]\( f''(x) > 0 \)[/tex].
[tex]\[ 150x^4 - 40x^3 > 0 \][/tex]
Factoring out the common terms:
[tex]\[ 10x^3(15x - 4) > 0 \][/tex]
This inequality is satisfied when [tex]\( x < 0 \)[/tex] or [tex]\( x > \frac{4}{15} \)[/tex].
Thus, [tex]\( f(x) \)[/tex] is concave up in the intervals:
[tex]\[ \text{Concave up: } (-\infty, 0) \cup (\frac{4}{15}, \infty) \][/tex]
So, let's compile everything:
(A) Critical numbers = [tex]\( [0, \frac{1}{3}] \)[/tex]
(B) Increasing: [tex]\( (\frac{1}{3}, \infty) \)[/tex]
(C) Decreasing: [tex]\( (-\infty, 0) \cup (0, \frac{1}{3}) \)[/tex]
(D) [tex]\( x \)[/tex] values of local maxima = NONE
(E) [tex]\( x \)[/tex] values of local minima = [tex]\( \frac{1}{3} \)[/tex]
(F) Concave up = [tex]\( (-\infty, 0) \cup (\frac{4}{15}, \infty) \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.