Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the 95% confidence interval for the difference in the proportions of red beads in each container, follow these steps:
1. Calculate the sample proportions:
- The first sample has 13 red beads out of 50, so the proportion [tex]\( \hat{p}_1 \)[/tex] is:
[tex]\[ \hat{p}_1 = \frac{13}{50} = 0.26 \][/tex]
- The second sample has 16 red beads out of 50, so the proportion [tex]\( \hat{p}_2 \)[/tex] is:
[tex]\[ \hat{p}_2 = \frac{16}{50} = 0.32 \][/tex]
2. Calculate the difference in proportions:
[tex]\[ \hat{p}_1 - \hat{p}_2 = 0.26 - 0.32 = -0.06 \][/tex]
3. Calculate the standard error of the difference in proportions:
[tex]\[ \text{Standard Error} = \sqrt{\frac{0.26 \times (1 - 0.26)}{50} + \frac{0.32 \times (1 - 0.32)}{50}} \][/tex]
Let's compute each part inside the square root separately:
- For [tex]\( \hat{p}_1 \)[/tex]:
[tex]\[ \frac{0.26 \times 0.74}{50} = \frac{0.1924}{50} = 0.003848 \][/tex]
- For [tex]\( \hat{p}_2 \)[/tex]:
[tex]\[ \frac{0.32 \times 0.68}{50} = \frac{0.2176}{50} = 0.004352 \][/tex]
Adding these together:
[tex]\[ 0.003848 + 0.004352 = 0.0082 \][/tex]
Taking the square root:
[tex]\[ \sqrt{0.0082} \approx 0.09055 \][/tex]
4. Determine the margin of error using the Z-value for a 95% confidence interval (which is 1.96):
[tex]\[ \text{Margin of Error} = 1.96 \times 0.09055 \approx 0.17749 \][/tex]
5. Calculate the confidence interval:
- Lower limit:
[tex]\[ -0.06 - 0.17749 \approx -0.23749 \][/tex]
- Upper limit:
[tex]\[ -0.06 + 0.17749 \approx 0.11749 \][/tex]
Therefore, the 95% confidence interval for the difference in proportions of red beads in the two containers is approximately:
[tex]\[ (-0.23749, 0.11749) \][/tex]
1. Calculate the sample proportions:
- The first sample has 13 red beads out of 50, so the proportion [tex]\( \hat{p}_1 \)[/tex] is:
[tex]\[ \hat{p}_1 = \frac{13}{50} = 0.26 \][/tex]
- The second sample has 16 red beads out of 50, so the proportion [tex]\( \hat{p}_2 \)[/tex] is:
[tex]\[ \hat{p}_2 = \frac{16}{50} = 0.32 \][/tex]
2. Calculate the difference in proportions:
[tex]\[ \hat{p}_1 - \hat{p}_2 = 0.26 - 0.32 = -0.06 \][/tex]
3. Calculate the standard error of the difference in proportions:
[tex]\[ \text{Standard Error} = \sqrt{\frac{0.26 \times (1 - 0.26)}{50} + \frac{0.32 \times (1 - 0.32)}{50}} \][/tex]
Let's compute each part inside the square root separately:
- For [tex]\( \hat{p}_1 \)[/tex]:
[tex]\[ \frac{0.26 \times 0.74}{50} = \frac{0.1924}{50} = 0.003848 \][/tex]
- For [tex]\( \hat{p}_2 \)[/tex]:
[tex]\[ \frac{0.32 \times 0.68}{50} = \frac{0.2176}{50} = 0.004352 \][/tex]
Adding these together:
[tex]\[ 0.003848 + 0.004352 = 0.0082 \][/tex]
Taking the square root:
[tex]\[ \sqrt{0.0082} \approx 0.09055 \][/tex]
4. Determine the margin of error using the Z-value for a 95% confidence interval (which is 1.96):
[tex]\[ \text{Margin of Error} = 1.96 \times 0.09055 \approx 0.17749 \][/tex]
5. Calculate the confidence interval:
- Lower limit:
[tex]\[ -0.06 - 0.17749 \approx -0.23749 \][/tex]
- Upper limit:
[tex]\[ -0.06 + 0.17749 \approx 0.11749 \][/tex]
Therefore, the 95% confidence interval for the difference in proportions of red beads in the two containers is approximately:
[tex]\[ (-0.23749, 0.11749) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.