At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\(5 \times 10^c + 5 \times 10^d = 50,500\)[/tex], we can follow these steps:
1. Start simplifying the equation: Notice that each term in the equation [tex]\(5 \times 10^c + 5 \times 10^d = 50,500\)[/tex] has a common factor of 5. We can divide both sides of the equation by 5 to simplify it:
[tex]\[ \frac{5 \times 10^c + 5 \times 10^d}{5} = \frac{50,500}{5} \][/tex]
This reduces to:
[tex]\[ 10^c + 10^d = 10,100 \][/tex]
2. Analyze possible values for [tex]\(c\)[/tex] and [tex]\(d\)[/tex]: We need to find two powers of 10 that add up to 10,100. To find appropriate values for [tex]\(c\)[/tex] and [tex]\(d\)[/tex], let’s try different combinations:
- Consider [tex]\(10^c = 10,000\)[/tex] (which corresponds to [tex]\(c = 4\)[/tex]), compare it with:
[tex]\[ 10^4 + 10^d = 10,100 \quad \text{gives} \quad 10^d = 10,100 - 10,000 = 100 \][/tex]
Hence, [tex]\(10^d = 100\)[/tex] which corresponds to [tex]\(d = 2\)[/tex].
3. Verify the solution: Plug back the values [tex]\(c = 4\)[/tex] and [tex]\(d = 2\)[/tex] into the original equation to check if they satisfy the condition:
[tex]\[ 5 \times 10^4 + 5 \times 10^2 = 5 \times 10,000 + 5 \times 100 = 50,000 + 500 = 50,500 \][/tex]
The left-hand side of the equation equals the right-hand side, confirming that our chosen values are correct.
Thus, the values for [tex]\(c\)[/tex] and [tex]\(d\)[/tex] that satisfy the equation are [tex]\(\boxed{4}\)[/tex] and [tex]\(\boxed{2}\)[/tex].
1. Start simplifying the equation: Notice that each term in the equation [tex]\(5 \times 10^c + 5 \times 10^d = 50,500\)[/tex] has a common factor of 5. We can divide both sides of the equation by 5 to simplify it:
[tex]\[ \frac{5 \times 10^c + 5 \times 10^d}{5} = \frac{50,500}{5} \][/tex]
This reduces to:
[tex]\[ 10^c + 10^d = 10,100 \][/tex]
2. Analyze possible values for [tex]\(c\)[/tex] and [tex]\(d\)[/tex]: We need to find two powers of 10 that add up to 10,100. To find appropriate values for [tex]\(c\)[/tex] and [tex]\(d\)[/tex], let’s try different combinations:
- Consider [tex]\(10^c = 10,000\)[/tex] (which corresponds to [tex]\(c = 4\)[/tex]), compare it with:
[tex]\[ 10^4 + 10^d = 10,100 \quad \text{gives} \quad 10^d = 10,100 - 10,000 = 100 \][/tex]
Hence, [tex]\(10^d = 100\)[/tex] which corresponds to [tex]\(d = 2\)[/tex].
3. Verify the solution: Plug back the values [tex]\(c = 4\)[/tex] and [tex]\(d = 2\)[/tex] into the original equation to check if they satisfy the condition:
[tex]\[ 5 \times 10^4 + 5 \times 10^2 = 5 \times 10,000 + 5 \times 100 = 50,000 + 500 = 50,500 \][/tex]
The left-hand side of the equation equals the right-hand side, confirming that our chosen values are correct.
Thus, the values for [tex]\(c\)[/tex] and [tex]\(d\)[/tex] that satisfy the equation are [tex]\(\boxed{4}\)[/tex] and [tex]\(\boxed{2}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.