Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The distance between Lincoln, NE, and Boulder, CO, is about 500 miles. The distance between Boulder, CO, and a third city is 200 miles.

Assuming the three cities form a triangle on the map, what are the possible values for the distance [tex]\(d\)[/tex], in miles, between Lincoln, NE, and the third city?

\(\_\_\_\_\_\_ < d < \_\_\_\_\_\_\_


Sagot :

To determine the possible distances, [tex]\( d \)[/tex], between Lincoln, NE, and the third city, given the distances between Lincoln and Boulder (500 miles) and between Boulder and the third city (200 miles), we need to use the triangle inequality theorem. This theorem states that for any triangle with sides [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

1. [tex]\( a + b > c \)[/tex]
2. [tex]\( a + c > b \)[/tex]
3. [tex]\( b + c > a \)[/tex]

In our scenario:
- Let [tex]\( a \)[/tex] represent the distance between Lincoln and Boulder, which is 500 miles.
- Let [tex]\( b \)[/tex] represent the distance between Boulder and the third city, which is 200 miles.
- Let [tex]\( c \)[/tex] represent the distance [tex]\( d \)[/tex] between Lincoln and the third city.

We need to find the range of values for [tex]\( c \)[/tex] (or [tex]\( d \)[/tex]).

### Applying the Triangle Inequality Theorem
1. [tex]\( a + b > c \)[/tex]
[tex]\[ 500 + 200 > c \][/tex]
[tex]\[ 700 > c \quad \text{or} \quad c < 700 \][/tex]

2. [tex]\( a + c > b \)[/tex]
[tex]\[ 500 + c > 200 \][/tex]
[tex]\[ c > 200 - 500 \][/tex]
Since [tex]\( 200 - 500 \)[/tex] is negative:
[tex]\[ c > -300 \][/tex]
Which is always true since distances cannot be negative. We skip this step in the effective range calculation.

3. [tex]\( b + c > a \)[/tex]
[tex]\[ 200 + c > 500 \][/tex]
[tex]\[ c > 500 - 200 \][/tex]
[tex]\[ c > 300 \][/tex]

### Gathering the Findings
Combining these inequalities, we get:
[tex]\[ 300 < d < 700 \][/tex]

Therefore, the possible distance [tex]\( d \)[/tex] between Lincoln, NE, and the third city is in the range:
[tex]\[ 300 < d < 700 \][/tex]

So, the values representing the possible distance are:
[tex]\[ 300 < d < 700 \][/tex]