Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem, let's address the constraints systematically.
1. Dimensions of the Car:
- The length [tex]\( l \)[/tex] must be 3 inches greater than the width [tex]\( x \)[/tex]. Thus, we can write:
[tex]\[ l = x + 3 \][/tex]
- The width [tex]\( x \)[/tex] must be at least 2 inches greater than the radius of the wheels [tex]\( y \)[/tex]. Hence:
[tex]\[ x \geq y + 2 \][/tex]
2. Cost Constraints:
- The cost of the base is calculated based on its area. If the length is [tex]\( l \)[/tex] and the width is [tex]\( x \)[/tex], then the area [tex]\( A \)[/tex] is [tex]\( x \times l \)[/tex]. The cost per square inch is [tex]\( \$0.50 \)[/tex], so the total cost for the base is:
[tex]\[ \text{Cost of base} = 0.50 \times x \times l \][/tex]
- The radius of each wheel is [tex]\( y \)[/tex], and each of the 4 wheels costs [tex]\( \$2.25 \)[/tex] per inch of radius. Thus, the cost for the wheels is:
[tex]\[ \text{Cost of wheels} = 4 \times 2.25 \times y = 9y \][/tex]
- Combining these, the total cost of the car must not exceed [tex]\( \$50 \)[/tex]:
[tex]\[ 0.50 \times x \times l + 9y \leq 50 \][/tex]
- Substituting [tex]\( l = x + 3 \)[/tex]:
[tex]\[ 0.50 \times x \times (x + 3) + 9y \leq 50 \][/tex]
[tex]\[ 0.50(x^2 + 3x) + 9y \leq 50 \][/tex]
[tex]\[ 0.50x^2 + 1.5x + 9y \leq 50 \][/tex]
Now we can translate these constraints into a system of inequalities. Given [tex]\( x \geq y + 2 \)[/tex], and combining it with the cost constraint, we have:
[tex]\[ x \geq y + 2 \][/tex]
[tex]\[ 0.50x^2 + 1.5x + 9y \leq 50 \][/tex]
Which matches system D. Therefore, the correct system of inequalities that John and his son should use is:
[tex]\[ \begin{array}{l} x \geq y + 2 \\ 0.50 x^2 + 1.5x + 9 y \leq 50 \end{array} \][/tex]
So, the correct answer is D:
[tex]\[ \begin{array}{l} x \geq y + 2 \\ 0.50 x^2 + 1.5x + 9 y \leq 50 \end{array} \][/tex]
1. Dimensions of the Car:
- The length [tex]\( l \)[/tex] must be 3 inches greater than the width [tex]\( x \)[/tex]. Thus, we can write:
[tex]\[ l = x + 3 \][/tex]
- The width [tex]\( x \)[/tex] must be at least 2 inches greater than the radius of the wheels [tex]\( y \)[/tex]. Hence:
[tex]\[ x \geq y + 2 \][/tex]
2. Cost Constraints:
- The cost of the base is calculated based on its area. If the length is [tex]\( l \)[/tex] and the width is [tex]\( x \)[/tex], then the area [tex]\( A \)[/tex] is [tex]\( x \times l \)[/tex]. The cost per square inch is [tex]\( \$0.50 \)[/tex], so the total cost for the base is:
[tex]\[ \text{Cost of base} = 0.50 \times x \times l \][/tex]
- The radius of each wheel is [tex]\( y \)[/tex], and each of the 4 wheels costs [tex]\( \$2.25 \)[/tex] per inch of radius. Thus, the cost for the wheels is:
[tex]\[ \text{Cost of wheels} = 4 \times 2.25 \times y = 9y \][/tex]
- Combining these, the total cost of the car must not exceed [tex]\( \$50 \)[/tex]:
[tex]\[ 0.50 \times x \times l + 9y \leq 50 \][/tex]
- Substituting [tex]\( l = x + 3 \)[/tex]:
[tex]\[ 0.50 \times x \times (x + 3) + 9y \leq 50 \][/tex]
[tex]\[ 0.50(x^2 + 3x) + 9y \leq 50 \][/tex]
[tex]\[ 0.50x^2 + 1.5x + 9y \leq 50 \][/tex]
Now we can translate these constraints into a system of inequalities. Given [tex]\( x \geq y + 2 \)[/tex], and combining it with the cost constraint, we have:
[tex]\[ x \geq y + 2 \][/tex]
[tex]\[ 0.50x^2 + 1.5x + 9y \leq 50 \][/tex]
Which matches system D. Therefore, the correct system of inequalities that John and his son should use is:
[tex]\[ \begin{array}{l} x \geq y + 2 \\ 0.50 x^2 + 1.5x + 9 y \leq 50 \end{array} \][/tex]
So, the correct answer is D:
[tex]\[ \begin{array}{l} x \geq y + 2 \\ 0.50 x^2 + 1.5x + 9 y \leq 50 \end{array} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.