Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the real zeros of the function [tex]\( g(x) = x^3 + 2x^2 - x - 2 \)[/tex], follow these steps:
1. Understand the Problem: We need to determine the values of [tex]\( x \)[/tex] at which [tex]\( g(x) = 0 \)[/tex].
2. Set the Function to Zero:
[tex]\[ x^3 + 2x^2 - x - 2 = 0 \][/tex]
3. Solve the Equation: Identify the real roots of this polynomial equation by analyzing its factors, using methods such as factoring, synthetic division, or using a root-finding algorithm.
4. Verify the Roots:
Let's substitute the possible roots from the given choices into the equation to verify which ones satisfy [tex]\( g(x) = 0 \)[/tex].
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 1^3 + 2(1)^2 - 1 - 2 = 1 + 2 - 1 - 2 = 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is a root.
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = (-1)^3 + 2(-1)^2 - (-1) - 2 = -1 + 2 + 1 - 2 = 0 \][/tex]
So, [tex]\( x = -1 \)[/tex] is a root.
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 2^3 + 2(2)^2 - 2 - 2 = 8 + 8 - 2 - 2 = 12 \][/tex]
[tex]\( g(2) \neq 0 \)[/tex], so [tex]\( x = 2 \)[/tex] is not a root.
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = (-2)^3 + 2(-2)^2 - (-2) - 2 = -8 + 8 + 2 - 2 = 0 \][/tex]
So, [tex]\( x = -2 \)[/tex] is a root.
5. Check the Answer Choices:
Let's examine each of the given answer choices in light of our findings:
- A. [tex]\( 1, -1, 2 \)[/tex] (includes [tex]\( 2 \)[/tex], which is not a root)
- B. [tex]\( 1, -1, -2 \)[/tex] (all are roots, a correct match)
- C. [tex]\( 1, -1 \)[/tex] (misses [tex]\( -2 \)[/tex], so is incomplete)
- D. [tex]\( 2, -2, 1 \)[/tex] (includes [tex]\( 2 \)[/tex], which is not a root)
Hence, the correct answer is:
[tex]\[ \boxed{\text{B}} \][/tex]
1. Understand the Problem: We need to determine the values of [tex]\( x \)[/tex] at which [tex]\( g(x) = 0 \)[/tex].
2. Set the Function to Zero:
[tex]\[ x^3 + 2x^2 - x - 2 = 0 \][/tex]
3. Solve the Equation: Identify the real roots of this polynomial equation by analyzing its factors, using methods such as factoring, synthetic division, or using a root-finding algorithm.
4. Verify the Roots:
Let's substitute the possible roots from the given choices into the equation to verify which ones satisfy [tex]\( g(x) = 0 \)[/tex].
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 1^3 + 2(1)^2 - 1 - 2 = 1 + 2 - 1 - 2 = 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is a root.
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = (-1)^3 + 2(-1)^2 - (-1) - 2 = -1 + 2 + 1 - 2 = 0 \][/tex]
So, [tex]\( x = -1 \)[/tex] is a root.
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 2^3 + 2(2)^2 - 2 - 2 = 8 + 8 - 2 - 2 = 12 \][/tex]
[tex]\( g(2) \neq 0 \)[/tex], so [tex]\( x = 2 \)[/tex] is not a root.
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = (-2)^3 + 2(-2)^2 - (-2) - 2 = -8 + 8 + 2 - 2 = 0 \][/tex]
So, [tex]\( x = -2 \)[/tex] is a root.
5. Check the Answer Choices:
Let's examine each of the given answer choices in light of our findings:
- A. [tex]\( 1, -1, 2 \)[/tex] (includes [tex]\( 2 \)[/tex], which is not a root)
- B. [tex]\( 1, -1, -2 \)[/tex] (all are roots, a correct match)
- C. [tex]\( 1, -1 \)[/tex] (misses [tex]\( -2 \)[/tex], so is incomplete)
- D. [tex]\( 2, -2, 1 \)[/tex] (includes [tex]\( 2 \)[/tex], which is not a root)
Hence, the correct answer is:
[tex]\[ \boxed{\text{B}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.