Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To simplify the expression [tex]\(\sqrt[4]{162 u^5}\)[/tex], follow these steps:
1. Factorize 162:
First, we express 162 as the product of its prime factors:
[tex]\[ 162 = 2 \times 81 = 2 \times 3^4 \][/tex]
Hence, we can write:
[tex]\[ 162 = 2 \times 3^4 \][/tex]
2. Rewrite the expression:
Substitute the factorization into the original expression:
[tex]\[ \sqrt[4]{162 u^5} = \sqrt[4]{2 \times 3^4 \times u^5} \][/tex]
3. Separate the terms under the fourth root:
Using properties of radicals, we can separate the terms:
[tex]\[ \sqrt[4]{2 \times 3^4 \times u^5} = \sqrt[4]{2} \times \sqrt[4]{3^4} \times \sqrt[4]{u^5} \][/tex]
4. Simplify each part:
a. Simplify [tex]\(\sqrt[4]{3^4}\)[/tex]:
[tex]\[ \sqrt[4]{3^4} = 3 \][/tex]
b. Simplify [tex]\(\sqrt[4]{u^5}\)[/tex]:
[tex]\[ \sqrt[4]{u^5} = (u^5)^{1/4} = u^{5/4} \][/tex]
5. Combine the simplified terms:
Multiply the simplified parts together:
[tex]\[ \sqrt[4]{2} \times 3 \times u^{5/4} \][/tex]
Therefore, the simplified radical form of the expression is:
[tex]\[ \sqrt[4]{162 u^5} = 3 \sqrt[4]{2} u^{5/4} \][/tex]
1. Factorize 162:
First, we express 162 as the product of its prime factors:
[tex]\[ 162 = 2 \times 81 = 2 \times 3^4 \][/tex]
Hence, we can write:
[tex]\[ 162 = 2 \times 3^4 \][/tex]
2. Rewrite the expression:
Substitute the factorization into the original expression:
[tex]\[ \sqrt[4]{162 u^5} = \sqrt[4]{2 \times 3^4 \times u^5} \][/tex]
3. Separate the terms under the fourth root:
Using properties of radicals, we can separate the terms:
[tex]\[ \sqrt[4]{2 \times 3^4 \times u^5} = \sqrt[4]{2} \times \sqrt[4]{3^4} \times \sqrt[4]{u^5} \][/tex]
4. Simplify each part:
a. Simplify [tex]\(\sqrt[4]{3^4}\)[/tex]:
[tex]\[ \sqrt[4]{3^4} = 3 \][/tex]
b. Simplify [tex]\(\sqrt[4]{u^5}\)[/tex]:
[tex]\[ \sqrt[4]{u^5} = (u^5)^{1/4} = u^{5/4} \][/tex]
5. Combine the simplified terms:
Multiply the simplified parts together:
[tex]\[ \sqrt[4]{2} \times 3 \times u^{5/4} \][/tex]
Therefore, the simplified radical form of the expression is:
[tex]\[ \sqrt[4]{162 u^5} = 3 \sqrt[4]{2} u^{5/4} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.