Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which equation must be true given that the point [tex]\((4, 5)\)[/tex] is on the graph of a function, let's break down the concepts involved.
When a point [tex]\((a, b)\)[/tex] is on the graph of a function [tex]\(f(x)\)[/tex], it means that the function [tex]\(f\)[/tex] evaluated at [tex]\(x = a\)[/tex] equals [tex]\(b\)[/tex]. In other words, [tex]\(f(a) = b\)[/tex].
Given the point [tex]\((4, 5)\)[/tex]:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 5\)[/tex]
To determine the correct equation, we need to find the expression that represents [tex]\(f(4) = 5\)[/tex].
Now let's analyze each equation provided:
1. [tex]\( f(5) = 4 \)[/tex]:
- This implies that if we evaluate the function [tex]\(f\)[/tex] at [tex]\(x = 5\)[/tex], we get the result 4.
- However, this does not correspond to the given point [tex]\((4, 5)\)[/tex].
2. [tex]\( f(5, 4) = 9 \)[/tex]:
- This implies that the function [tex]\(f\)[/tex] takes two inputs and outputs 9.
- This notation is not relevant to our case since the given point is of the form [tex]\( (x, y) \)[/tex] where [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are interpreted typically in one-variable functions.
3. [tex]\( f(4) = 5 \)[/tex]:
- This directly translates to the point [tex]\((4, 5)\)[/tex] on the function [tex]\(f\)[/tex].
- Evaluating the function at [tex]\( x = 4 \)[/tex] yields 5, exactly what we are given.
4. [tex]\( f(5, 4) = 1 \)[/tex]:
- Similar to the second option, this implies a two-variable function that outputs 1, which is not relevant to our case.
Clearly, the equation that must be true is:
[tex]\[ f(4) = 5 \][/tex]
Thus, the correct equation is:
[tex]\[ \boxed{f(4) = 5} \][/tex]
When a point [tex]\((a, b)\)[/tex] is on the graph of a function [tex]\(f(x)\)[/tex], it means that the function [tex]\(f\)[/tex] evaluated at [tex]\(x = a\)[/tex] equals [tex]\(b\)[/tex]. In other words, [tex]\(f(a) = b\)[/tex].
Given the point [tex]\((4, 5)\)[/tex]:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 5\)[/tex]
To determine the correct equation, we need to find the expression that represents [tex]\(f(4) = 5\)[/tex].
Now let's analyze each equation provided:
1. [tex]\( f(5) = 4 \)[/tex]:
- This implies that if we evaluate the function [tex]\(f\)[/tex] at [tex]\(x = 5\)[/tex], we get the result 4.
- However, this does not correspond to the given point [tex]\((4, 5)\)[/tex].
2. [tex]\( f(5, 4) = 9 \)[/tex]:
- This implies that the function [tex]\(f\)[/tex] takes two inputs and outputs 9.
- This notation is not relevant to our case since the given point is of the form [tex]\( (x, y) \)[/tex] where [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are interpreted typically in one-variable functions.
3. [tex]\( f(4) = 5 \)[/tex]:
- This directly translates to the point [tex]\((4, 5)\)[/tex] on the function [tex]\(f\)[/tex].
- Evaluating the function at [tex]\( x = 4 \)[/tex] yields 5, exactly what we are given.
4. [tex]\( f(5, 4) = 1 \)[/tex]:
- Similar to the second option, this implies a two-variable function that outputs 1, which is not relevant to our case.
Clearly, the equation that must be true is:
[tex]\[ f(4) = 5 \][/tex]
Thus, the correct equation is:
[tex]\[ \boxed{f(4) = 5} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.