Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the [tex]\(99\% \)[/tex] confidence interval for the population mean, we'll follow these steps:
1. Identify the sample size ([tex]\(n\)[/tex]): The sample size provided is [tex]\(n = 85\)[/tex].
2. Identify the confidence level: We are given a [tex]\(99\%\)[/tex] confidence level.
3. Determine the appropriate [tex]\(z^\)[/tex]-score: From the provided table, the [tex]\(z^\)[/tex]-score for a [tex]\(99\%\)[/tex] confidence level is [tex]\(2.58\)[/tex].
4. Calculate the margin of error (E):
The margin of error is given by the formula:
[tex]\[ E = z^* \times \frac{s}{\sqrt{n}} \][/tex]
Here:
- [tex]\(z^* = 2.58\)[/tex]
- [tex]\(s\)[/tex] is the standard deviation of the sample (not provided in the question)
- [tex]\(\sqrt{n}\)[/tex] is the square root of the sample size, here [tex]\(\sqrt{85}\)[/tex]
5. Calculate the confidence interval:
The confidence interval is given by:
[tex]\[ \bar{x} \pm E \][/tex]
This expands to:
[tex]\[ \left( \bar{x} - E, \bar{x} + E \right) \][/tex]
where:
- [tex]\(\bar{x}\)[/tex] is the sample mean (not provided in the question)
- [tex]\(E\)[/tex] is the margin of error calculated above
In summary, to find the [tex]\(99\%\)[/tex] confidence interval for the population mean, you'll need the sample mean ([tex]\(\bar{x}\)[/tex]) and the standard deviation ([tex]\(s\)[/tex]) of the sample. If either of these values is not available, we cannot compute the exact confidence interval.
Since in this specific case the mean ([tex]\(\bar{x}\)[/tex]) and standard deviation ([tex]\(s\)[/tex]) are not provided, you cannot calculate the exact [tex]\(99\%\)[/tex] confidence interval for the population mean.
As a result:
"Mean of the sample ([tex]\(\bar{x}\)[/tex]) and standard deviation ([tex]\(s\)[/tex]) must be provided."
1. Identify the sample size ([tex]\(n\)[/tex]): The sample size provided is [tex]\(n = 85\)[/tex].
2. Identify the confidence level: We are given a [tex]\(99\%\)[/tex] confidence level.
3. Determine the appropriate [tex]\(z^\)[/tex]-score: From the provided table, the [tex]\(z^\)[/tex]-score for a [tex]\(99\%\)[/tex] confidence level is [tex]\(2.58\)[/tex].
4. Calculate the margin of error (E):
The margin of error is given by the formula:
[tex]\[ E = z^* \times \frac{s}{\sqrt{n}} \][/tex]
Here:
- [tex]\(z^* = 2.58\)[/tex]
- [tex]\(s\)[/tex] is the standard deviation of the sample (not provided in the question)
- [tex]\(\sqrt{n}\)[/tex] is the square root of the sample size, here [tex]\(\sqrt{85}\)[/tex]
5. Calculate the confidence interval:
The confidence interval is given by:
[tex]\[ \bar{x} \pm E \][/tex]
This expands to:
[tex]\[ \left( \bar{x} - E, \bar{x} + E \right) \][/tex]
where:
- [tex]\(\bar{x}\)[/tex] is the sample mean (not provided in the question)
- [tex]\(E\)[/tex] is the margin of error calculated above
In summary, to find the [tex]\(99\%\)[/tex] confidence interval for the population mean, you'll need the sample mean ([tex]\(\bar{x}\)[/tex]) and the standard deviation ([tex]\(s\)[/tex]) of the sample. If either of these values is not available, we cannot compute the exact confidence interval.
Since in this specific case the mean ([tex]\(\bar{x}\)[/tex]) and standard deviation ([tex]\(s\)[/tex]) are not provided, you cannot calculate the exact [tex]\(99\%\)[/tex] confidence interval for the population mean.
As a result:
"Mean of the sample ([tex]\(\bar{x}\)[/tex]) and standard deviation ([tex]\(s\)[/tex]) must be provided."
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.