Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the average atomic mass of element [tex]\( M \)[/tex], we need to consider both the atomic masses of its isotopes and their relative abundances. Here's a step-by-step method to solve the problem:
1. Convert the relative abundances from percentages to fractions:
- For the isotope with a relative abundance of 78.99%: [tex]\( \frac{78.99}{100} = 0.7899 \)[/tex]
- For the isotope with a relative abundance of 10.00%: [tex]\( \frac{10.00}{100} = 0.1000 \)[/tex]
- For the isotope with a relative abundance of 11.01%: [tex]\( \frac{11.01}{100} = 0.1101 \)[/tex]
2. Multiply each atomic mass by its corresponding fractional abundance:
- [tex]\( 23.9850 \, \text{amu} \times 0.7899 = 18.952015 \)[/tex]
- [tex]\( 24.9858 \, \text{amu} \times 0.1000 = 2.49858 \)[/tex]
- [tex]\( 25.9826 \, \text{amu} \times 0.1101 = 2.85442076 \)[/tex]
3. Sum these values to get the average atomic mass:
[tex]\[ 18.952015 + 2.49858 + 2.85442076 = 24.30501576 \, \text{amu} \][/tex]
Therefore, the average atomic mass of element [tex]\( M \)[/tex] is approximately [tex]\( 24.30 \, \text{amu} \)[/tex].
So, the correct answer is:
- [tex]\( 24.30 \)[/tex]
The average atomic mass of element [tex]\( M \)[/tex] is [tex]\( 24.30 \, \text{amu} \)[/tex].
1. Convert the relative abundances from percentages to fractions:
- For the isotope with a relative abundance of 78.99%: [tex]\( \frac{78.99}{100} = 0.7899 \)[/tex]
- For the isotope with a relative abundance of 10.00%: [tex]\( \frac{10.00}{100} = 0.1000 \)[/tex]
- For the isotope with a relative abundance of 11.01%: [tex]\( \frac{11.01}{100} = 0.1101 \)[/tex]
2. Multiply each atomic mass by its corresponding fractional abundance:
- [tex]\( 23.9850 \, \text{amu} \times 0.7899 = 18.952015 \)[/tex]
- [tex]\( 24.9858 \, \text{amu} \times 0.1000 = 2.49858 \)[/tex]
- [tex]\( 25.9826 \, \text{amu} \times 0.1101 = 2.85442076 \)[/tex]
3. Sum these values to get the average atomic mass:
[tex]\[ 18.952015 + 2.49858 + 2.85442076 = 24.30501576 \, \text{amu} \][/tex]
Therefore, the average atomic mass of element [tex]\( M \)[/tex] is approximately [tex]\( 24.30 \, \text{amu} \)[/tex].
So, the correct answer is:
- [tex]\( 24.30 \)[/tex]
The average atomic mass of element [tex]\( M \)[/tex] is [tex]\( 24.30 \, \text{amu} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.