Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's go through the steps to determine what percentage of the population has an IQ lower than 112, given a mean IQ of 100 and a standard deviation of 15.
1. Calculate the Z-score: The Z-score is a measure of how many standard deviations an individual data point (in this case, an IQ of 112) is from the population mean.
Formula for Z-score:
[tex]\[ Z = \frac{(X - \mu)}{\sigma} \][/tex]
where [tex]\(X\)[/tex] is the value of the data point (IQ score), [tex]\(\mu\)[/tex] is the population mean, and [tex]\(\sigma\)[/tex] is the standard deviation.
Plug in the values:
[tex]\[ Z = \frac{(112 - 100)}{15} = \frac{12}{15} = 0.8 \][/tex]
2. Find the cumulative probability: The cumulative probability, often denoted as [tex]\(P(Z \leq z)\)[/tex], represents the proportion of the population that falls below the given Z-score.
For [tex]\(Z = 0.8\)[/tex], using standard normal distribution tables or a calculator, we find that the cumulative probability is approximately 0.788.
3. Convert to percentage: To find the percentage of the population with a lower IQ, we convert the cumulative probability to a percentage.
[tex]\[ 0.788 \times 100 = 78.8 \% \][/tex]
Therefore, approximately 78.8% of the population has an IQ lower than 112.
The closest answer choice is:
B. 79%
1. Calculate the Z-score: The Z-score is a measure of how many standard deviations an individual data point (in this case, an IQ of 112) is from the population mean.
Formula for Z-score:
[tex]\[ Z = \frac{(X - \mu)}{\sigma} \][/tex]
where [tex]\(X\)[/tex] is the value of the data point (IQ score), [tex]\(\mu\)[/tex] is the population mean, and [tex]\(\sigma\)[/tex] is the standard deviation.
Plug in the values:
[tex]\[ Z = \frac{(112 - 100)}{15} = \frac{12}{15} = 0.8 \][/tex]
2. Find the cumulative probability: The cumulative probability, often denoted as [tex]\(P(Z \leq z)\)[/tex], represents the proportion of the population that falls below the given Z-score.
For [tex]\(Z = 0.8\)[/tex], using standard normal distribution tables or a calculator, we find that the cumulative probability is approximately 0.788.
3. Convert to percentage: To find the percentage of the population with a lower IQ, we convert the cumulative probability to a percentage.
[tex]\[ 0.788 \times 100 = 78.8 \% \][/tex]
Therefore, approximately 78.8% of the population has an IQ lower than 112.
The closest answer choice is:
B. 79%
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.