At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, let's carefully read through the given information and match it with the correct equation.
We are given:
- The height of the window is 0.6 feet less than 2.5 times its width.
- The height of the window is 4.9 feet.
We need to represent these statements in an equation to find the width, denoted as [tex]\( x \)[/tex].
1. The phrase "0.6 feet less than 2.5 times its width" translates to our equation the following way:
- "2.5 times its width" is represented as [tex]\( 2.5x \)[/tex].
- "0.6 feet less than that" means we subtract 0.6 from [tex]\( 2.5x \)[/tex].
So, the equation becomes:
[tex]\[ 2.5x - 0.6 \][/tex]
2. Given that the height of the window is 4.9 feet, we set the equation equal to 4.9:
[tex]\[ 2.5x - 0.6 = 4.9 \][/tex]
Therefore, the correct equation that can be used to determine [tex]\( x \)[/tex], the width of the window, is:
[tex]\[ 2.5x - 0.6 = 4.9 \][/tex]
This matches the provided answer:
[tex]\[ \boxed{2.5 x - 0.6 = 4.9} \][/tex]
The other provided equations do not correctly represent the problem statements.
We are given:
- The height of the window is 0.6 feet less than 2.5 times its width.
- The height of the window is 4.9 feet.
We need to represent these statements in an equation to find the width, denoted as [tex]\( x \)[/tex].
1. The phrase "0.6 feet less than 2.5 times its width" translates to our equation the following way:
- "2.5 times its width" is represented as [tex]\( 2.5x \)[/tex].
- "0.6 feet less than that" means we subtract 0.6 from [tex]\( 2.5x \)[/tex].
So, the equation becomes:
[tex]\[ 2.5x - 0.6 \][/tex]
2. Given that the height of the window is 4.9 feet, we set the equation equal to 4.9:
[tex]\[ 2.5x - 0.6 = 4.9 \][/tex]
Therefore, the correct equation that can be used to determine [tex]\( x \)[/tex], the width of the window, is:
[tex]\[ 2.5x - 0.6 = 4.9 \][/tex]
This matches the provided answer:
[tex]\[ \boxed{2.5 x - 0.6 = 4.9} \][/tex]
The other provided equations do not correctly represent the problem statements.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.