Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Multiply and simplify the expression [tex]\((2\sqrt{-25})(4 - \sqrt{-100})\)[/tex].

Show all work.


Sagot :

To multiply the expressions [tex]\((2, \sqrt{-25})(4-\sqrt{-100})\)[/tex], we need to simplify each term first and then perform the multiplication step-by-step.

### Step 1: Simplify the square roots of negative numbers
1. [tex]\(\sqrt{-25}\)[/tex]:
- We know that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
- Therefore, [tex]\(\sqrt{-25} = \sqrt{25} \cdot \sqrt{-1} = 5i\)[/tex].

2. [tex]\(\sqrt{-100}\)[/tex]:
- Similarly, [tex]\(\sqrt{-100} = \sqrt{100} \cdot \sqrt{-1} = 10i\)[/tex].

### Step 2: Substitute the simplified values into the expression
The expression now becomes:
[tex]\[ (2 \times 5i)(4 - 10i) \][/tex]

### Step 3: Perform the multiplication
Let's break it down into steps:
1. Compute [tex]\(2 \times 5i\)[/tex]:
[tex]\[ 2 \times 5i = 10i \][/tex]

2. Multiply [tex]\(10i\)[/tex] by [tex]\((4 - 10i)\)[/tex]:
- Use the distributive property to expand the multiplication.
[tex]\[ 10i \times (4 - 10i) = 10i \times 4 + 10i \times (-10i) \][/tex]

- Simplify each term:
- [tex]\(10i \times 4 = 40i\)[/tex]
- [tex]\(10i \times -10i = -100i^2\)[/tex]
Remember that [tex]\(i^2 = -1\)[/tex], so:
[tex]\( -100i^2 = -100 \times (-1) = 100 \)[/tex]

3. Combine the results:
[tex]\[ 40i + 100 \][/tex]

### Step 4: Write the final result in standard form
Express the final result as a complex number in the form [tex]\(a + bi\)[/tex]:
[tex]\[ 40i + 100 = 100 + 40i \][/tex]

Thus, the product of [tex]\((2 \cdot \sqrt{-25})(4 - \sqrt{-100})\)[/tex] is:
[tex]\[ 100 + 40i \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.