Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the velocity of projection when a stone is projected to achieve a horizontal range of 24 meters and a peak height of 6 meters, we can use principles of projectile motion. Here is the detailed, step-by-step solution for finding the initial velocity [tex]\( U \)[/tex]:
### Step-by-Step Solution:
1. Given Data:
- Horizontal Range ([tex]\( R \)[/tex]) = 24 meters
- Maximum Height ([tex]\( H \)[/tex]) = 6 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.81 m/s²
2. Projectile Motion Equations:
For the vertical motion:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
For the horizontal motion:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
3. Equation for Maximum Height:
Rearrange the height formula to solve for [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
[tex]\[ U^2 \sin^2(\theta) = 2gH \][/tex]
[tex]\[ U \sin(\theta) = \sqrt{2gH} \][/tex]
4. Equation for Horizontal Range:
Rearrange the range formula to solve for [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
Knowing that [tex]\(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\)[/tex]:
[tex]\[ R = \frac{2U^2 \sin(\theta) \cos(\theta)}{g} \][/tex]
[tex]\[ U^2 = \frac{Rg}{2 \sin(\theta) \cos(\theta)} \][/tex]
Since we already calculated [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{R g}{2 \sqrt{2gH}} \][/tex]
5. Calculate Individual Components:
- Calculate [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \sin(\theta) = \sqrt{2 \cdot 9.81 \cdot 6} = \sqrt{117.72} \approx 10.8 \, \text{m/s} \][/tex]
- Calculate [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot \sqrt{2 \cdot 9.81 \cdot 6}} \][/tex]
Substitute the value calculated:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot 10.8} \approx 10.9 \, \text{m/s} \][/tex]
6. Resultant Initial Velocity [tex]\( U \)[/tex]:
[tex]\[ U = \sqrt{(U \sin(\theta))^2 + (U \cos(\theta))^2 } \][/tex]
Plug in the values:
[tex]\[ U = \sqrt{10.8^2 + 10.9^2} \][/tex]
[tex]\[ U = \sqrt{116.64 + 118.81} \][/tex]
[tex]\[ U = \sqrt{235.45} \][/tex]
[tex]\[ U \approx 15.3 \, \text{m/s} \][/tex]
Thus, the velocity of projection, [tex]\( U \)[/tex], is approximately [tex]\( 24.3 \, \text{m/s} \)[/tex].
### Step-by-Step Solution:
1. Given Data:
- Horizontal Range ([tex]\( R \)[/tex]) = 24 meters
- Maximum Height ([tex]\( H \)[/tex]) = 6 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.81 m/s²
2. Projectile Motion Equations:
For the vertical motion:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
For the horizontal motion:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
3. Equation for Maximum Height:
Rearrange the height formula to solve for [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
[tex]\[ U^2 \sin^2(\theta) = 2gH \][/tex]
[tex]\[ U \sin(\theta) = \sqrt{2gH} \][/tex]
4. Equation for Horizontal Range:
Rearrange the range formula to solve for [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
Knowing that [tex]\(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\)[/tex]:
[tex]\[ R = \frac{2U^2 \sin(\theta) \cos(\theta)}{g} \][/tex]
[tex]\[ U^2 = \frac{Rg}{2 \sin(\theta) \cos(\theta)} \][/tex]
Since we already calculated [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{R g}{2 \sqrt{2gH}} \][/tex]
5. Calculate Individual Components:
- Calculate [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \sin(\theta) = \sqrt{2 \cdot 9.81 \cdot 6} = \sqrt{117.72} \approx 10.8 \, \text{m/s} \][/tex]
- Calculate [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot \sqrt{2 \cdot 9.81 \cdot 6}} \][/tex]
Substitute the value calculated:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot 10.8} \approx 10.9 \, \text{m/s} \][/tex]
6. Resultant Initial Velocity [tex]\( U \)[/tex]:
[tex]\[ U = \sqrt{(U \sin(\theta))^2 + (U \cos(\theta))^2 } \][/tex]
Plug in the values:
[tex]\[ U = \sqrt{10.8^2 + 10.9^2} \][/tex]
[tex]\[ U = \sqrt{116.64 + 118.81} \][/tex]
[tex]\[ U = \sqrt{235.45} \][/tex]
[tex]\[ U \approx 15.3 \, \text{m/s} \][/tex]
Thus, the velocity of projection, [tex]\( U \)[/tex], is approximately [tex]\( 24.3 \, \text{m/s} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.