Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve for the velocity of projection when a stone is projected to achieve a horizontal range of 24 meters and a peak height of 6 meters, we can use principles of projectile motion. Here is the detailed, step-by-step solution for finding the initial velocity [tex]\( U \)[/tex]:
### Step-by-Step Solution:
1. Given Data:
- Horizontal Range ([tex]\( R \)[/tex]) = 24 meters
- Maximum Height ([tex]\( H \)[/tex]) = 6 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.81 m/s²
2. Projectile Motion Equations:
For the vertical motion:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
For the horizontal motion:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
3. Equation for Maximum Height:
Rearrange the height formula to solve for [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
[tex]\[ U^2 \sin^2(\theta) = 2gH \][/tex]
[tex]\[ U \sin(\theta) = \sqrt{2gH} \][/tex]
4. Equation for Horizontal Range:
Rearrange the range formula to solve for [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
Knowing that [tex]\(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\)[/tex]:
[tex]\[ R = \frac{2U^2 \sin(\theta) \cos(\theta)}{g} \][/tex]
[tex]\[ U^2 = \frac{Rg}{2 \sin(\theta) \cos(\theta)} \][/tex]
Since we already calculated [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{R g}{2 \sqrt{2gH}} \][/tex]
5. Calculate Individual Components:
- Calculate [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \sin(\theta) = \sqrt{2 \cdot 9.81 \cdot 6} = \sqrt{117.72} \approx 10.8 \, \text{m/s} \][/tex]
- Calculate [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot \sqrt{2 \cdot 9.81 \cdot 6}} \][/tex]
Substitute the value calculated:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot 10.8} \approx 10.9 \, \text{m/s} \][/tex]
6. Resultant Initial Velocity [tex]\( U \)[/tex]:
[tex]\[ U = \sqrt{(U \sin(\theta))^2 + (U \cos(\theta))^2 } \][/tex]
Plug in the values:
[tex]\[ U = \sqrt{10.8^2 + 10.9^2} \][/tex]
[tex]\[ U = \sqrt{116.64 + 118.81} \][/tex]
[tex]\[ U = \sqrt{235.45} \][/tex]
[tex]\[ U \approx 15.3 \, \text{m/s} \][/tex]
Thus, the velocity of projection, [tex]\( U \)[/tex], is approximately [tex]\( 24.3 \, \text{m/s} \)[/tex].
### Step-by-Step Solution:
1. Given Data:
- Horizontal Range ([tex]\( R \)[/tex]) = 24 meters
- Maximum Height ([tex]\( H \)[/tex]) = 6 meters
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.81 m/s²
2. Projectile Motion Equations:
For the vertical motion:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
For the horizontal motion:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
3. Equation for Maximum Height:
Rearrange the height formula to solve for [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ H = \frac{U^2 \sin^2(\theta)}{2g} \][/tex]
[tex]\[ U^2 \sin^2(\theta) = 2gH \][/tex]
[tex]\[ U \sin(\theta) = \sqrt{2gH} \][/tex]
4. Equation for Horizontal Range:
Rearrange the range formula to solve for [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ R = \frac{U^2 \sin(2\theta)}{g} \][/tex]
Knowing that [tex]\(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\)[/tex]:
[tex]\[ R = \frac{2U^2 \sin(\theta) \cos(\theta)}{g} \][/tex]
[tex]\[ U^2 = \frac{Rg}{2 \sin(\theta) \cos(\theta)} \][/tex]
Since we already calculated [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{R g}{2 \sqrt{2gH}} \][/tex]
5. Calculate Individual Components:
- Calculate [tex]\( U \sin(\theta) \)[/tex]:
[tex]\[ U \sin(\theta) = \sqrt{2 \cdot 9.81 \cdot 6} = \sqrt{117.72} \approx 10.8 \, \text{m/s} \][/tex]
- Calculate [tex]\( U \cos(\theta) \)[/tex]:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot \sqrt{2 \cdot 9.81 \cdot 6}} \][/tex]
Substitute the value calculated:
[tex]\[ U \cos(\theta) = \frac{24 \cdot 9.81}{2 \cdot 10.8} \approx 10.9 \, \text{m/s} \][/tex]
6. Resultant Initial Velocity [tex]\( U \)[/tex]:
[tex]\[ U = \sqrt{(U \sin(\theta))^2 + (U \cos(\theta))^2 } \][/tex]
Plug in the values:
[tex]\[ U = \sqrt{10.8^2 + 10.9^2} \][/tex]
[tex]\[ U = \sqrt{116.64 + 118.81} \][/tex]
[tex]\[ U = \sqrt{235.45} \][/tex]
[tex]\[ U \approx 15.3 \, \text{m/s} \][/tex]
Thus, the velocity of projection, [tex]\( U \)[/tex], is approximately [tex]\( 24.3 \, \text{m/s} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.