Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To identify the given equation of a line, we first need to recognize the structure of a linear equation in slope-intercept form, which is given as:
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
Now, let's analyze each of the provided equations to determine their slopes ([tex]\( m \)[/tex]) and y-intercepts ([tex]\( b \)[/tex]).
1. Equation: [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-\frac{5}{3}\)[/tex] (approximately [tex]\(-1.6667\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
2. Equation: [tex]\( y = 8x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(8\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
3. Equation: [tex]\( y = \frac{3}{5}x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(\frac{3}{5}\)[/tex] (approximately [tex]\(0.6\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
4. Equation: [tex]\( y = -3x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-3\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
After identifying the slopes and y-intercepts of each equation, we can summarize the results for each equation:
1. [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]:
- Slope = [tex]\(-1.6667\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
2. [tex]\( y = 8x + 1 \)[/tex]:
- Slope = [tex]\(8\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
3. [tex]\( y = \frac{3}{5}x + 1 \)[/tex]:
- Slope = [tex]\(0.6\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
4. [tex]\( y = -3x - 1 \)[/tex]:
- Slope = [tex]\(-3\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
Thus, all the equations have been correctly analyzed for their slope and intercept in the slope-intercept form.
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
Now, let's analyze each of the provided equations to determine their slopes ([tex]\( m \)[/tex]) and y-intercepts ([tex]\( b \)[/tex]).
1. Equation: [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-\frac{5}{3}\)[/tex] (approximately [tex]\(-1.6667\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
2. Equation: [tex]\( y = 8x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(8\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
3. Equation: [tex]\( y = \frac{3}{5}x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(\frac{3}{5}\)[/tex] (approximately [tex]\(0.6\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
4. Equation: [tex]\( y = -3x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-3\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
After identifying the slopes and y-intercepts of each equation, we can summarize the results for each equation:
1. [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]:
- Slope = [tex]\(-1.6667\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
2. [tex]\( y = 8x + 1 \)[/tex]:
- Slope = [tex]\(8\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
3. [tex]\( y = \frac{3}{5}x + 1 \)[/tex]:
- Slope = [tex]\(0.6\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
4. [tex]\( y = -3x - 1 \)[/tex]:
- Slope = [tex]\(-3\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
Thus, all the equations have been correctly analyzed for their slope and intercept in the slope-intercept form.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.