Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To identify the given equation of a line, we first need to recognize the structure of a linear equation in slope-intercept form, which is given as:
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
Now, let's analyze each of the provided equations to determine their slopes ([tex]\( m \)[/tex]) and y-intercepts ([tex]\( b \)[/tex]).
1. Equation: [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-\frac{5}{3}\)[/tex] (approximately [tex]\(-1.6667\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
2. Equation: [tex]\( y = 8x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(8\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
3. Equation: [tex]\( y = \frac{3}{5}x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(\frac{3}{5}\)[/tex] (approximately [tex]\(0.6\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
4. Equation: [tex]\( y = -3x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-3\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
After identifying the slopes and y-intercepts of each equation, we can summarize the results for each equation:
1. [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]:
- Slope = [tex]\(-1.6667\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
2. [tex]\( y = 8x + 1 \)[/tex]:
- Slope = [tex]\(8\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
3. [tex]\( y = \frac{3}{5}x + 1 \)[/tex]:
- Slope = [tex]\(0.6\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
4. [tex]\( y = -3x - 1 \)[/tex]:
- Slope = [tex]\(-3\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
Thus, all the equations have been correctly analyzed for their slope and intercept in the slope-intercept form.
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
Now, let's analyze each of the provided equations to determine their slopes ([tex]\( m \)[/tex]) and y-intercepts ([tex]\( b \)[/tex]).
1. Equation: [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-\frac{5}{3}\)[/tex] (approximately [tex]\(-1.6667\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
2. Equation: [tex]\( y = 8x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(8\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
3. Equation: [tex]\( y = \frac{3}{5}x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(\frac{3}{5}\)[/tex] (approximately [tex]\(0.6\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
4. Equation: [tex]\( y = -3x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-3\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
After identifying the slopes and y-intercepts of each equation, we can summarize the results for each equation:
1. [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]:
- Slope = [tex]\(-1.6667\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
2. [tex]\( y = 8x + 1 \)[/tex]:
- Slope = [tex]\(8\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
3. [tex]\( y = \frac{3}{5}x + 1 \)[/tex]:
- Slope = [tex]\(0.6\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
4. [tex]\( y = -3x - 1 \)[/tex]:
- Slope = [tex]\(-3\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
Thus, all the equations have been correctly analyzed for their slope and intercept in the slope-intercept form.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.