Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To identify the given equation of a line, we first need to recognize the structure of a linear equation in slope-intercept form, which is given as:
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
Now, let's analyze each of the provided equations to determine their slopes ([tex]\( m \)[/tex]) and y-intercepts ([tex]\( b \)[/tex]).
1. Equation: [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-\frac{5}{3}\)[/tex] (approximately [tex]\(-1.6667\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
2. Equation: [tex]\( y = 8x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(8\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
3. Equation: [tex]\( y = \frac{3}{5}x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(\frac{3}{5}\)[/tex] (approximately [tex]\(0.6\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
4. Equation: [tex]\( y = -3x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-3\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
After identifying the slopes and y-intercepts of each equation, we can summarize the results for each equation:
1. [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]:
- Slope = [tex]\(-1.6667\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
2. [tex]\( y = 8x + 1 \)[/tex]:
- Slope = [tex]\(8\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
3. [tex]\( y = \frac{3}{5}x + 1 \)[/tex]:
- Slope = [tex]\(0.6\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
4. [tex]\( y = -3x - 1 \)[/tex]:
- Slope = [tex]\(-3\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
Thus, all the equations have been correctly analyzed for their slope and intercept in the slope-intercept form.
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
Now, let's analyze each of the provided equations to determine their slopes ([tex]\( m \)[/tex]) and y-intercepts ([tex]\( b \)[/tex]).
1. Equation: [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-\frac{5}{3}\)[/tex] (approximately [tex]\(-1.6667\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
2. Equation: [tex]\( y = 8x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(8\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
3. Equation: [tex]\( y = \frac{3}{5}x + 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(\frac{3}{5}\)[/tex] (approximately [tex]\(0.6\)[/tex])
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(1\)[/tex]
4. Equation: [tex]\( y = -3x - 1 \)[/tex]
- Slope ( [tex]\( m \)[/tex] ): [tex]\(-3\)[/tex]
- Y-intercept ( [tex]\( b \)[/tex] ): [tex]\(-1\)[/tex]
After identifying the slopes and y-intercepts of each equation, we can summarize the results for each equation:
1. [tex]\( y = -\frac{5}{3}x - 1 \)[/tex]:
- Slope = [tex]\(-1.6667\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
2. [tex]\( y = 8x + 1 \)[/tex]:
- Slope = [tex]\(8\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
3. [tex]\( y = \frac{3}{5}x + 1 \)[/tex]:
- Slope = [tex]\(0.6\)[/tex]
- Y-intercept = [tex]\(1\)[/tex]
4. [tex]\( y = -3x - 1 \)[/tex]:
- Slope = [tex]\(-3\)[/tex]
- Y-intercept = [tex]\(-1\)[/tex]
Thus, all the equations have been correctly analyzed for their slope and intercept in the slope-intercept form.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.