Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To prove that [tex]\(\lim_{{x \to 0}} \sqrt{4-x} = 2\)[/tex], we will use the definition of a limit. Let’s apply the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition of a limit:
1. Definition: We need to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(0 < |x - 0| < \delta\)[/tex], then [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex].
2. Simplifying the expression: Let's start by manipulating the expression [tex]\(|\sqrt{4 - x} - 2|\)[/tex]. Notice:
[tex]\[ |\sqrt{4 - x} - 2|. \][/tex]
3. Converting to a helpful form: We can multiply and divide by the conjugate to help simplify:
[tex]\[ |\sqrt{4 - x} - 2| = \left|\frac{(\sqrt{4 - x} - 2) \cdot (\sqrt{4 - x} + 2)}{\sqrt{4 - x} + 2}\right| = \left|\frac{4 - x - 4}{\sqrt{4 - x} + 2}\right| = \left|\frac{-x}{\sqrt{4 - x} + 2}\right| = \frac{|x|}{|\sqrt{4 - x} + 2|}. \][/tex]
4. Estimating the denominator: Observe that since [tex]\(x\)[/tex] is approaching 0, [tex]\(\sqrt{4 - x} + 2\)[/tex] is close to [tex]\(\sqrt{4} + 2 = 4\)[/tex]. Let's note that for small values of [tex]\(x\)[/tex], the expression [tex]\(\sqrt{4 - x} + 2\)[/tex] remains close to 4 and is bounded below by some positive number. Specifically, since [tex]\(\sqrt{4 - x}\)[/tex] is a continuous function near [tex]\(x = 0\)[/tex]:
[tex]\[ \sqrt{4 - x} \in [\sqrt{3.9}, 2] \text{ when } x \text{ is close to } 0. \][/tex]
Hence, we can estimate:
[tex]\[ \sqrt{4 - x} + 2 \geq \sqrt{3.9} + 2 > 2 + 2 = 4. \][/tex]
Now, we have a clear lower bound for the denominator which does not equal zero and remains positive.
5. Finding [tex]\(\delta\)[/tex] in terms of [tex]\(\epsilon\)[/tex]:
Given that for very small [tex]\(x\)[/tex], [tex]\(\sqrt{4 - x} + 2\)[/tex] is approximately 4:
[tex]\[ \frac{|x|}{|\sqrt{4 - x} + 2|} \leq \frac{|x|}{4}. \][/tex]
For [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex], we need:
[tex]\[ \frac{|x|}{4} < \epsilon \implies |x| < 4\epsilon. \][/tex]
Thus, we can take [tex]\(\delta = 4\epsilon\)[/tex].
6. Conclusion: Finally, by the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, for every [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = 4\epsilon\)[/tex], then for all [tex]\(x\)[/tex] such that [tex]\(0 < |x - 0| < \delta\)[/tex], it follows that:
[tex]\[ |\sqrt{4 - x} - 2| < \epsilon. \][/tex]
Therefore, we have shown via the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition that:
[tex]\[ \lim_{{x \to 0}} \sqrt{4 - x} = 2. \][/tex]
1. Definition: We need to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(0 < |x - 0| < \delta\)[/tex], then [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex].
2. Simplifying the expression: Let's start by manipulating the expression [tex]\(|\sqrt{4 - x} - 2|\)[/tex]. Notice:
[tex]\[ |\sqrt{4 - x} - 2|. \][/tex]
3. Converting to a helpful form: We can multiply and divide by the conjugate to help simplify:
[tex]\[ |\sqrt{4 - x} - 2| = \left|\frac{(\sqrt{4 - x} - 2) \cdot (\sqrt{4 - x} + 2)}{\sqrt{4 - x} + 2}\right| = \left|\frac{4 - x - 4}{\sqrt{4 - x} + 2}\right| = \left|\frac{-x}{\sqrt{4 - x} + 2}\right| = \frac{|x|}{|\sqrt{4 - x} + 2|}. \][/tex]
4. Estimating the denominator: Observe that since [tex]\(x\)[/tex] is approaching 0, [tex]\(\sqrt{4 - x} + 2\)[/tex] is close to [tex]\(\sqrt{4} + 2 = 4\)[/tex]. Let's note that for small values of [tex]\(x\)[/tex], the expression [tex]\(\sqrt{4 - x} + 2\)[/tex] remains close to 4 and is bounded below by some positive number. Specifically, since [tex]\(\sqrt{4 - x}\)[/tex] is a continuous function near [tex]\(x = 0\)[/tex]:
[tex]\[ \sqrt{4 - x} \in [\sqrt{3.9}, 2] \text{ when } x \text{ is close to } 0. \][/tex]
Hence, we can estimate:
[tex]\[ \sqrt{4 - x} + 2 \geq \sqrt{3.9} + 2 > 2 + 2 = 4. \][/tex]
Now, we have a clear lower bound for the denominator which does not equal zero and remains positive.
5. Finding [tex]\(\delta\)[/tex] in terms of [tex]\(\epsilon\)[/tex]:
Given that for very small [tex]\(x\)[/tex], [tex]\(\sqrt{4 - x} + 2\)[/tex] is approximately 4:
[tex]\[ \frac{|x|}{|\sqrt{4 - x} + 2|} \leq \frac{|x|}{4}. \][/tex]
For [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex], we need:
[tex]\[ \frac{|x|}{4} < \epsilon \implies |x| < 4\epsilon. \][/tex]
Thus, we can take [tex]\(\delta = 4\epsilon\)[/tex].
6. Conclusion: Finally, by the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, for every [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = 4\epsilon\)[/tex], then for all [tex]\(x\)[/tex] such that [tex]\(0 < |x - 0| < \delta\)[/tex], it follows that:
[tex]\[ |\sqrt{4 - x} - 2| < \epsilon. \][/tex]
Therefore, we have shown via the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition that:
[tex]\[ \lim_{{x \to 0}} \sqrt{4 - x} = 2. \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.