Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To prove that [tex]\(\lim_{{x \to 0}} \sqrt{4-x} = 2\)[/tex], we will use the definition of a limit. Let’s apply the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition of a limit:
1. Definition: We need to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(0 < |x - 0| < \delta\)[/tex], then [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex].
2. Simplifying the expression: Let's start by manipulating the expression [tex]\(|\sqrt{4 - x} - 2|\)[/tex]. Notice:
[tex]\[ |\sqrt{4 - x} - 2|. \][/tex]
3. Converting to a helpful form: We can multiply and divide by the conjugate to help simplify:
[tex]\[ |\sqrt{4 - x} - 2| = \left|\frac{(\sqrt{4 - x} - 2) \cdot (\sqrt{4 - x} + 2)}{\sqrt{4 - x} + 2}\right| = \left|\frac{4 - x - 4}{\sqrt{4 - x} + 2}\right| = \left|\frac{-x}{\sqrt{4 - x} + 2}\right| = \frac{|x|}{|\sqrt{4 - x} + 2|}. \][/tex]
4. Estimating the denominator: Observe that since [tex]\(x\)[/tex] is approaching 0, [tex]\(\sqrt{4 - x} + 2\)[/tex] is close to [tex]\(\sqrt{4} + 2 = 4\)[/tex]. Let's note that for small values of [tex]\(x\)[/tex], the expression [tex]\(\sqrt{4 - x} + 2\)[/tex] remains close to 4 and is bounded below by some positive number. Specifically, since [tex]\(\sqrt{4 - x}\)[/tex] is a continuous function near [tex]\(x = 0\)[/tex]:
[tex]\[ \sqrt{4 - x} \in [\sqrt{3.9}, 2] \text{ when } x \text{ is close to } 0. \][/tex]
Hence, we can estimate:
[tex]\[ \sqrt{4 - x} + 2 \geq \sqrt{3.9} + 2 > 2 + 2 = 4. \][/tex]
Now, we have a clear lower bound for the denominator which does not equal zero and remains positive.
5. Finding [tex]\(\delta\)[/tex] in terms of [tex]\(\epsilon\)[/tex]:
Given that for very small [tex]\(x\)[/tex], [tex]\(\sqrt{4 - x} + 2\)[/tex] is approximately 4:
[tex]\[ \frac{|x|}{|\sqrt{4 - x} + 2|} \leq \frac{|x|}{4}. \][/tex]
For [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex], we need:
[tex]\[ \frac{|x|}{4} < \epsilon \implies |x| < 4\epsilon. \][/tex]
Thus, we can take [tex]\(\delta = 4\epsilon\)[/tex].
6. Conclusion: Finally, by the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, for every [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = 4\epsilon\)[/tex], then for all [tex]\(x\)[/tex] such that [tex]\(0 < |x - 0| < \delta\)[/tex], it follows that:
[tex]\[ |\sqrt{4 - x} - 2| < \epsilon. \][/tex]
Therefore, we have shown via the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition that:
[tex]\[ \lim_{{x \to 0}} \sqrt{4 - x} = 2. \][/tex]
1. Definition: We need to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(0 < |x - 0| < \delta\)[/tex], then [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex].
2. Simplifying the expression: Let's start by manipulating the expression [tex]\(|\sqrt{4 - x} - 2|\)[/tex]. Notice:
[tex]\[ |\sqrt{4 - x} - 2|. \][/tex]
3. Converting to a helpful form: We can multiply and divide by the conjugate to help simplify:
[tex]\[ |\sqrt{4 - x} - 2| = \left|\frac{(\sqrt{4 - x} - 2) \cdot (\sqrt{4 - x} + 2)}{\sqrt{4 - x} + 2}\right| = \left|\frac{4 - x - 4}{\sqrt{4 - x} + 2}\right| = \left|\frac{-x}{\sqrt{4 - x} + 2}\right| = \frac{|x|}{|\sqrt{4 - x} + 2|}. \][/tex]
4. Estimating the denominator: Observe that since [tex]\(x\)[/tex] is approaching 0, [tex]\(\sqrt{4 - x} + 2\)[/tex] is close to [tex]\(\sqrt{4} + 2 = 4\)[/tex]. Let's note that for small values of [tex]\(x\)[/tex], the expression [tex]\(\sqrt{4 - x} + 2\)[/tex] remains close to 4 and is bounded below by some positive number. Specifically, since [tex]\(\sqrt{4 - x}\)[/tex] is a continuous function near [tex]\(x = 0\)[/tex]:
[tex]\[ \sqrt{4 - x} \in [\sqrt{3.9}, 2] \text{ when } x \text{ is close to } 0. \][/tex]
Hence, we can estimate:
[tex]\[ \sqrt{4 - x} + 2 \geq \sqrt{3.9} + 2 > 2 + 2 = 4. \][/tex]
Now, we have a clear lower bound for the denominator which does not equal zero and remains positive.
5. Finding [tex]\(\delta\)[/tex] in terms of [tex]\(\epsilon\)[/tex]:
Given that for very small [tex]\(x\)[/tex], [tex]\(\sqrt{4 - x} + 2\)[/tex] is approximately 4:
[tex]\[ \frac{|x|}{|\sqrt{4 - x} + 2|} \leq \frac{|x|}{4}. \][/tex]
For [tex]\(|\sqrt{4 - x} - 2| < \epsilon\)[/tex], we need:
[tex]\[ \frac{|x|}{4} < \epsilon \implies |x| < 4\epsilon. \][/tex]
Thus, we can take [tex]\(\delta = 4\epsilon\)[/tex].
6. Conclusion: Finally, by the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, for every [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = 4\epsilon\)[/tex], then for all [tex]\(x\)[/tex] such that [tex]\(0 < |x - 0| < \delta\)[/tex], it follows that:
[tex]\[ |\sqrt{4 - x} - 2| < \epsilon. \][/tex]
Therefore, we have shown via the [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition that:
[tex]\[ \lim_{{x \to 0}} \sqrt{4 - x} = 2. \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.