Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the factors of the expression [tex]\(8x^3 - 27y^3\)[/tex], we start with recognizing that this expression represents a difference of two cubes. The general formula for factoring the difference of cubes is:
[tex]\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\][/tex]
In our case, we can rewrite [tex]\(8x^3\)[/tex] as [tex]\((2x)^3\)[/tex] and [tex]\(27y^3\)[/tex] as [tex]\((3y)^3\)[/tex]. Therefore, the expression [tex]\(8x^3 - 27y^3\)[/tex] can be expressed as:
[tex]\[ (2x)^3 - (3y)^3 \][/tex]
Applying the difference of cubes formula:
[tex]\[ a = 2x \quad \text{and} \quad b = 3y \][/tex]
Now we substitute [tex]\(2x\)[/tex] and [tex]\(3y\)[/tex] into the formula:
[tex]\[ (2x)^3 - (3y)^3 = (2x - 3y)((2x)^2 + (2x)(3y) + (3y)^2) \][/tex]
Simplifying inside the parentheses:
[tex]\[ = (2x - 3y)(4x^2 + 6xy + 9y^2) \][/tex]
Thus, the expression [tex]\(8x^3 - 27y^3\)[/tex] factors to:
[tex]\[ (2x - 3y)(4x^2 + 6xy + 9y^2) \][/tex]
Let's match our factors with the given options:
A. [tex]\((2x - 3y)\)[/tex] – Yes, this is a factor.
B. [tex]\((2x + 3y)\)[/tex] – No, this is not a factor.
C. [tex]\((4x^2 + 6xy + 9y^2)\)[/tex] – Yes, this is a factor.
D. [tex]\((4x^2 + 2xy - 6y^2)\)[/tex] – No, this is not a factor.
E. [tex]\((4x^2 - 2xy + 9y^2)\)[/tex] – No, this is not a factor.
So, the correct answers are:
A. [tex]\((2x - 3y)\)[/tex]
C. [tex]\((4x^2 + 6xy + 9y^2)\)[/tex]
[tex]\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\][/tex]
In our case, we can rewrite [tex]\(8x^3\)[/tex] as [tex]\((2x)^3\)[/tex] and [tex]\(27y^3\)[/tex] as [tex]\((3y)^3\)[/tex]. Therefore, the expression [tex]\(8x^3 - 27y^3\)[/tex] can be expressed as:
[tex]\[ (2x)^3 - (3y)^3 \][/tex]
Applying the difference of cubes formula:
[tex]\[ a = 2x \quad \text{and} \quad b = 3y \][/tex]
Now we substitute [tex]\(2x\)[/tex] and [tex]\(3y\)[/tex] into the formula:
[tex]\[ (2x)^3 - (3y)^3 = (2x - 3y)((2x)^2 + (2x)(3y) + (3y)^2) \][/tex]
Simplifying inside the parentheses:
[tex]\[ = (2x - 3y)(4x^2 + 6xy + 9y^2) \][/tex]
Thus, the expression [tex]\(8x^3 - 27y^3\)[/tex] factors to:
[tex]\[ (2x - 3y)(4x^2 + 6xy + 9y^2) \][/tex]
Let's match our factors with the given options:
A. [tex]\((2x - 3y)\)[/tex] – Yes, this is a factor.
B. [tex]\((2x + 3y)\)[/tex] – No, this is not a factor.
C. [tex]\((4x^2 + 6xy + 9y^2)\)[/tex] – Yes, this is a factor.
D. [tex]\((4x^2 + 2xy - 6y^2)\)[/tex] – No, this is not a factor.
E. [tex]\((4x^2 - 2xy + 9y^2)\)[/tex] – No, this is not a factor.
So, the correct answers are:
A. [tex]\((2x - 3y)\)[/tex]
C. [tex]\((4x^2 + 6xy + 9y^2)\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.