At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A photon has a frequency of [tex]\(2.9 \times 10^{-16} \text{ Hz}\)[/tex]. Planck's constant is [tex]\(6.63 \times 10^{-34} \text{ J} \cdot \text{s}\)[/tex].
The energy of the photon, to the nearest tenth place, is [tex]\(\square \times 10^{-49} \text{ J}\)[/tex].


Sagot :

To determine the energy of a photon, we can use the equation:

[tex]\[ E = h \cdot f \][/tex]

where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.63 \times 10^{-34} \, J \cdot s \)[/tex]),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\( 2.9 \times 10^{-16} \, Hz \)[/tex]).

Substituting the given values into the equation:

[tex]\[ E = (6.63 \times 10^{-34} \, J \cdot s) \cdot (2.9 \times 10^{-16} \, Hz) \][/tex]
[tex]\[ E = 6.63 \times 2.9 \times 10^{-34} \times 10^{-16} \, J \][/tex]
[tex]\[ E = 19.227 \times 10^{-50} \, J \][/tex]
[tex]\[ E = 1.9227 \times 10^{-49} \, J \][/tex]

Next, to express the energy to the nearest tenths place in terms of [tex]\( 10^{-49} \, J \)[/tex], we round [tex]\( 1.9227 \)[/tex] to the nearest tenth:

[tex]\[ E \approx 1.9 \times 10^{-49} \, J \][/tex]

Therefore, the energy of the photon is:

[tex]\[ \boxed{1.9 \times 10^{-49} \, J} \][/tex]