Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's multiply the two binomials [tex]\((\sqrt{10} + 2\sqrt{8})(\sqrt{10} - 2\sqrt{8})\)[/tex] step-by-step and find the final result.
We can use the difference of squares formula to simplify this expression. The difference of squares formula is:
[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]
In our case:
- [tex]\(a = \sqrt{10}\)[/tex]
- [tex]\(b = 2\sqrt{8}\)[/tex]
Now, substituting [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula:
[tex]\[ (\sqrt{10} + 2\sqrt{8})(\sqrt{10} - 2\sqrt{8}) = (\sqrt{10})^2 - (2\sqrt{8})^2 \][/tex]
Next, we calculate each term separately:
1. [tex]\((\sqrt{10})^2\)[/tex]:
[tex]\[ (\sqrt{10})^2 = 10 \][/tex]
2. [tex]\((2\sqrt{8})^2\)[/tex]:
[tex]\[ (2\sqrt{8})^2 = 2^2 \cdot (\sqrt{8})^2 = 4 \cdot 8 = 32 \][/tex]
Subtracting these terms:
[tex]\[ 10 - 32 = -22 \][/tex]
So, the final result of [tex]\((\sqrt{10} + 2\sqrt{8})(\sqrt{10} - 2\sqrt{8})\)[/tex] is:
[tex]\[ \boxed{-22} \][/tex]
We can use the difference of squares formula to simplify this expression. The difference of squares formula is:
[tex]\[ (a + b)(a - b) = a^2 - b^2 \][/tex]
In our case:
- [tex]\(a = \sqrt{10}\)[/tex]
- [tex]\(b = 2\sqrt{8}\)[/tex]
Now, substituting [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula:
[tex]\[ (\sqrt{10} + 2\sqrt{8})(\sqrt{10} - 2\sqrt{8}) = (\sqrt{10})^2 - (2\sqrt{8})^2 \][/tex]
Next, we calculate each term separately:
1. [tex]\((\sqrt{10})^2\)[/tex]:
[tex]\[ (\sqrt{10})^2 = 10 \][/tex]
2. [tex]\((2\sqrt{8})^2\)[/tex]:
[tex]\[ (2\sqrt{8})^2 = 2^2 \cdot (\sqrt{8})^2 = 4 \cdot 8 = 32 \][/tex]
Subtracting these terms:
[tex]\[ 10 - 32 = -22 \][/tex]
So, the final result of [tex]\((\sqrt{10} + 2\sqrt{8})(\sqrt{10} - 2\sqrt{8})\)[/tex] is:
[tex]\[ \boxed{-22} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.