Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Consider this system of linear equations:

[tex]\[ y = -3x + 5 \][/tex]
[tex]\[ y = mx + b \][/tex]

Which values of [tex]\( m \)[/tex] and [tex]\( b \)[/tex] will create a system of linear equations with no solution?

A. [tex]\( m = -3 \)[/tex] and [tex]\( b = -3 \)[/tex]

B. [tex]\( m = 5 \)[/tex] and [tex]\( b = -3 \)[/tex]

C. [tex]\( m = 3 \)[/tex] and [tex]\( b = 5 \)[/tex]

D. [tex]\( m = -3 \)[/tex] and [tex]\( b = 5 \)[/tex]

Sagot :

To determine which values of [tex]\( m \)[/tex] and [tex]\( b \)[/tex] will create a system of linear equations with no solution, we need to understand the conditions under which a system of linear equations has no solution.

A system of linear equations has no solution when the lines represented by the equations are parallel but not identical. For the lines to be parallel, their slopes must be equal. For them not to be identical, their intercepts must be different.

Consider the given equations:
1. [tex]\( y = -3x + 5 \)[/tex]
2. [tex]\( y = mx + b \)[/tex]

For the two lines to be parallel:
- The slopes ([tex]\( m \)[/tex]) must be equal. So, [tex]\( m \)[/tex] must be [tex]\(-3\)[/tex].

For the two lines not to be identical:
- The y-intercepts ([tex]\( b \)[/tex]) must be different. So, [tex]\( b \)[/tex] must not be [tex]\( 5 \)[/tex].

We are given four options:
1. [tex]\( m = -3 \)[/tex] and [tex]\( b = -3 \)[/tex]
2. [tex]\( m = 5 \)[/tex] and [tex]\( b = -3 \)[/tex]
3. [tex]\( m = 3 \)[/tex] and [tex]\( b = 5 \)[/tex]
4. [tex]\( m = -3 \)[/tex] and [tex]\( b = 5 \)[/tex]

Let's analyze each option:

1. [tex]\( m = -3 \)[/tex] and [tex]\( b = -3 \)[/tex]:
- The slopes are the same, [tex]\( m = -3 \)[/tex].
- The intercepts are different, [tex]\( b \neq 5 \)[/tex].
- Thus, the lines are parallel and not identical. This condition creates a system of linear equations with no solution.

2. [tex]\( m = 5 \)[/tex] and [tex]\( b = -3 \)[/tex]:
- The slopes are different, [tex]\( m \neq -3 \)[/tex].
- This means the lines are not parallel and therefore could intersect. This condition does not create a system of linear equations with no solution.

3. [tex]\( m = 3 \)[/tex] and [tex]\( b = 5 \)[/tex]:
- The slopes are different, [tex]\( m \neq -3 \)[/tex].
- This means the lines are not parallel and therefore could intersect. This condition does not create a system of linear equations with no solution.

4. [tex]\( m = -3 \)[/tex] and [tex]\( b = 5 \)[/tex]:
- The slopes are the same, [tex]\( m = -3 \)[/tex].
- The intercepts are the same, [tex]\( b = 5 \)[/tex].
- Thus, the lines are identical and have infinitely many solutions. This condition does not create a system of linear equations with no solution.

Therefore, the values of [tex]\( m \)[/tex] and [tex]\( b \)[/tex] that create a system of linear equations with no solution are:
[tex]\[ m = -3 \text{ and } b = -3 \][/tex]

So, the correct option is:
[tex]\[ m = -3 \text{ and } b = -3 \][/tex]

Thus, the system of linear equations with no solution is given when:
[tex]\[ \boxed{1} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.