Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the length of the line segment [tex]\(\overline{WX}\)[/tex] with endpoints [tex]\(W(-5, -1)\)[/tex] and [tex]\(X(2, 6)\)[/tex], we use the distance formula. The distance formula for the length between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's apply the coordinates of [tex]\(W\)[/tex] and [tex]\(X\)[/tex] into this formula.
1. Calculate the differences in the x-coordinates and y-coordinates:
[tex]\[ \Delta x = x_2 - x_1 = 2 - (-5) = 2 + 5 = 7 \][/tex]
[tex]\[ \Delta y = y_2 - y_1 = 6 - (-1) = 6 + 1 = 7 \][/tex]
2. Substitute the differences [tex]\(\Delta x\)[/tex] and [tex]\(\Delta y\)[/tex] into the distance formula:
[tex]\[ \text{Distance} = \sqrt{(7)^2 + (7)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{49 + 49} \][/tex]
[tex]\[ \text{Distance} = \sqrt{98} \][/tex]
[tex]\[ \text{Distance} = \sqrt{49 \times 2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{49} \times \sqrt{2} \][/tex]
[tex]\[ \text{Distance} = 7 \sqrt{2} \][/tex]
Therefore, the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(7 \sqrt{2}\)[/tex].
The correct answer is:
D. [tex]\(7 \sqrt{2}\)[/tex]
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's apply the coordinates of [tex]\(W\)[/tex] and [tex]\(X\)[/tex] into this formula.
1. Calculate the differences in the x-coordinates and y-coordinates:
[tex]\[ \Delta x = x_2 - x_1 = 2 - (-5) = 2 + 5 = 7 \][/tex]
[tex]\[ \Delta y = y_2 - y_1 = 6 - (-1) = 6 + 1 = 7 \][/tex]
2. Substitute the differences [tex]\(\Delta x\)[/tex] and [tex]\(\Delta y\)[/tex] into the distance formula:
[tex]\[ \text{Distance} = \sqrt{(7)^2 + (7)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{49 + 49} \][/tex]
[tex]\[ \text{Distance} = \sqrt{98} \][/tex]
[tex]\[ \text{Distance} = \sqrt{49 \times 2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{49} \times \sqrt{2} \][/tex]
[tex]\[ \text{Distance} = 7 \sqrt{2} \][/tex]
Therefore, the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(7 \sqrt{2}\)[/tex].
The correct answer is:
D. [tex]\(7 \sqrt{2}\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.