Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To prove that [tex]\(\lim _{x \rightarrow 9} \frac{4}{x} = \frac{4}{9}\)[/tex], we need to evaluate how the function [tex]\(\frac{4}{x}\)[/tex] behaves as [tex]\(x\)[/tex] approaches 9 from both sides (from values slightly less than 9 and values slightly greater than 9).
Let's go through a step-by-step process to understand this limit:
1. Understanding the Function:
- The function we are examining is [tex]\(\frac{4}{x}\)[/tex]. As [tex]\(x\)[/tex] gets closer to 9, we want to see what happens to the value of the function.
2. Substitute Values Close to 9:
- We substitute values of [tex]\(x\)[/tex] that are very close to 9 and observe the output of the function [tex]\(\frac{4}{x}\)[/tex]. We'll look at values slightly less than 9 (e.g., 8.9, 8.99, 8.999, 8.9999) and values slightly greater than 9 (e.g., 9.1, 9.01, 9.001, 9.0001).
3. Evaluate the Function at Values Slightly Less Than 9:
- For [tex]\(x = 8.9\)[/tex], [tex]\(\frac{4}{x} \approx 0.449438202247191\)[/tex]
- For [tex]\(x = 8.99\)[/tex], [tex]\(\frac{4}{x} \approx 0.44493882091212456\)[/tex]
- For [tex]\(x = 8.999\)[/tex], [tex]\(\frac{4}{x} \approx 0.44449383264807196\)[/tex]
- For [tex]\(x = 8.9999\)[/tex], [tex]\(\frac{4}{x} \approx 0.44444938277091967\)[/tex]
As we can see, as [tex]\(x\)[/tex] gets closer to 9 from the left, the value of [tex]\(\frac{4}{x}\)[/tex] gets closer to [tex]\(\frac{4}{9}\)[/tex].
4. Evaluate the Function at Values Slightly Greater Than 9:
- For [tex]\(x = 9.1\)[/tex], [tex]\(\frac{4}{x} \approx 0.43956043956043955\)[/tex]
- For [tex]\(x = 9.01\)[/tex], [tex]\(\frac{4}{x} \approx 0.4439511653718091\)[/tex]
- For [tex]\(x = 9.001\)[/tex], [tex]\(\frac{4}{x} \approx 0.44439506721475397\)[/tex]
- For [tex]\(x = 9.0001\)[/tex], [tex]\(\frac{4}{x} \approx 0.4444395062277086\)[/tex]
Likewise, as [tex]\(x\)[/tex] gets closer to 9 from the right, the value of [tex]\(\frac{4}{x}\)[/tex] approaches [tex]\(\frac{4}{9}\)[/tex].
5. Conclusion:
- By examining the output values from both sides of [tex]\(x = 9\)[/tex], it is evident that as [tex]\(x\)[/tex] approaches 9, the value of the function [tex]\(\frac{4}{x}\)[/tex] approaches [tex]\(\frac{4}{9}\)[/tex].
- Therefore, we can conclude that:
[tex]\[ \lim _{x \rightarrow 9} \frac{4}{x} = \frac{4}{9} \][/tex]
This completes our proof. The values we computed for different [tex]\(x\)[/tex] values approaching 9 indeed converge to [tex]\(\frac{4}{9}\)[/tex], validating the limit.
Let's go through a step-by-step process to understand this limit:
1. Understanding the Function:
- The function we are examining is [tex]\(\frac{4}{x}\)[/tex]. As [tex]\(x\)[/tex] gets closer to 9, we want to see what happens to the value of the function.
2. Substitute Values Close to 9:
- We substitute values of [tex]\(x\)[/tex] that are very close to 9 and observe the output of the function [tex]\(\frac{4}{x}\)[/tex]. We'll look at values slightly less than 9 (e.g., 8.9, 8.99, 8.999, 8.9999) and values slightly greater than 9 (e.g., 9.1, 9.01, 9.001, 9.0001).
3. Evaluate the Function at Values Slightly Less Than 9:
- For [tex]\(x = 8.9\)[/tex], [tex]\(\frac{4}{x} \approx 0.449438202247191\)[/tex]
- For [tex]\(x = 8.99\)[/tex], [tex]\(\frac{4}{x} \approx 0.44493882091212456\)[/tex]
- For [tex]\(x = 8.999\)[/tex], [tex]\(\frac{4}{x} \approx 0.44449383264807196\)[/tex]
- For [tex]\(x = 8.9999\)[/tex], [tex]\(\frac{4}{x} \approx 0.44444938277091967\)[/tex]
As we can see, as [tex]\(x\)[/tex] gets closer to 9 from the left, the value of [tex]\(\frac{4}{x}\)[/tex] gets closer to [tex]\(\frac{4}{9}\)[/tex].
4. Evaluate the Function at Values Slightly Greater Than 9:
- For [tex]\(x = 9.1\)[/tex], [tex]\(\frac{4}{x} \approx 0.43956043956043955\)[/tex]
- For [tex]\(x = 9.01\)[/tex], [tex]\(\frac{4}{x} \approx 0.4439511653718091\)[/tex]
- For [tex]\(x = 9.001\)[/tex], [tex]\(\frac{4}{x} \approx 0.44439506721475397\)[/tex]
- For [tex]\(x = 9.0001\)[/tex], [tex]\(\frac{4}{x} \approx 0.4444395062277086\)[/tex]
Likewise, as [tex]\(x\)[/tex] gets closer to 9 from the right, the value of [tex]\(\frac{4}{x}\)[/tex] approaches [tex]\(\frac{4}{9}\)[/tex].
5. Conclusion:
- By examining the output values from both sides of [tex]\(x = 9\)[/tex], it is evident that as [tex]\(x\)[/tex] approaches 9, the value of the function [tex]\(\frac{4}{x}\)[/tex] approaches [tex]\(\frac{4}{9}\)[/tex].
- Therefore, we can conclude that:
[tex]\[ \lim _{x \rightarrow 9} \frac{4}{x} = \frac{4}{9} \][/tex]
This completes our proof. The values we computed for different [tex]\(x\)[/tex] values approaching 9 indeed converge to [tex]\(\frac{4}{9}\)[/tex], validating the limit.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.