Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's break down this problem step-by-step:
### Step 1: Convert Masses to Kilograms
- Mass of ice: [tex]\(3.20 \, \text{g} = 0.0032 \, \text{kg}\)[/tex]
- Mass of water: [tex]\(85 \, \text{g} = 0.085 \, \text{kg}\)[/tex]
- Mass of copper calorimeter: [tex]\(50 \, \text{g} = 0.050 \, \text{kg}\)[/tex]
### Step 2: Given Data
- Initial temperature of ice: [tex]\(-15^{\circ} \text{C}\)[/tex]
- Initial temperature of water: [tex]\(40^{\circ} \text{C}\)[/tex]
- Specific heat capacity of ice: [tex]\(2,100 \, \text{J/kg} \cdot \text{K}\)[/tex]
- Specific heat capacity of water: [tex]\(4,186 \, \text{J/kg} \cdot \text{K}\)[/tex]
- Specific heat capacity of copper: [tex]\(400 \, \text{J/kg} \cdot \text{K}\)[/tex]
- Latent heat of fusion of ice: [tex]\(3.34 \times 10^5 \, \text{J/kg}\)[/tex]
### Step 3: Heat Required to Warm Ice from [tex]\(-15^{\circ} \text{C}\)[/tex] to [tex]\(0^{\circ} \text{C}\)[/tex]
[tex]\[ Q_1 = m_{\text{ice}} \times c_{\text{ice}} \times \Delta T_{\text{ice}} \][/tex]
[tex]\[ Q_1 = 0.0032 \, \text{kg} \times 2,100 \, \text{J/kg} \cdot \text{K} \times (0^{\circ} \text{C} - (-15^{\circ} \text{C})) \][/tex]
[tex]\[ Q_1 = 0.0032 \times 2,100 \times 15 \][/tex]
[tex]\[ Q_1 = 100.8 \, \text{J} \][/tex]
### Step 4: Heat Required to Melt Ice at [tex]\(0^{\circ} \text{C}\)[/tex]
[tex]\[ Q_2 = m_{\text{ice}} \times L_f \][/tex]
[tex]\[ Q_2 = 0.0032 \, \text{kg} \times 3.34 \times 10^5 \, \text{J/kg} \][/tex]
[tex]\[ Q_2 = 1,068.8 \, \text{J} \][/tex]
Now, the total heat required for the ice to become liquid water at [tex]\(0^{\circ} \text{C}\)[/tex]:
[tex]\[ Q_{\text{total ice}} = Q_1 + Q_2 \][/tex]
[tex]\[ Q_{\text{total ice}} = 100.8 + 1,068.8 \][/tex]
[tex]\[ Q_{\text{total ice}} = 1,169.6 \, \text{J} \][/tex]
### Step 5: Heat Lost by Water and Calorimeter
The water and copper calorimeter will lose heat as they cool down to the final temperature [tex]\( T_f \)[/tex].
### Final Balance Equation
The heat gained by ice (to warm up and melt) will be equal to the heat lost by the water and the copper calorimeter combined:
[tex]\[ Q_{\text{ice to } T_f} = m_{\text{ice}} \times c_{\text{water}} \times (T_f - 0) \][/tex]
[tex]\[ Q_{\text{water to } T_f} = m_{\text{water}} \times c_{\text{water}} \times (40 - T_f) \][/tex]
[tex]\[ Q_{\text{copper to } T_f} = m_{\text{copper}} \times c_{\text{copper}} \times (40 - T_f) \][/tex]
Using the heat balance equation:
[tex]\[ Q_{\text{total ice}} + Q_{\text{ice to } T_f} = Q_{\text{water to } T_f} + Q_{\text{copper to } T_f} \][/tex]
And solving numerically, we find that:
[tex]\[ T_f \approx 35.618 \, ^\circ \text{C} \][/tex]
### Final Results:
1. Heating ice to [tex]\(0^{\circ} \text{C}\)[/tex]:
- Energy required: [tex]\(100.8 \, \text{J}\)[/tex]
2. Melting ice at [tex]\(0^{\circ} \text{C}\)[/tex]:
- Energy required: [tex]\(1,068.8 \, \text{J}\)[/tex]
3. Final temperature of the resulting mixture:
- [tex]\(35.618 \, ^\circ \text{C}\)[/tex]
This concludes our detailed step-by-step solution for the problem.
### Step 1: Convert Masses to Kilograms
- Mass of ice: [tex]\(3.20 \, \text{g} = 0.0032 \, \text{kg}\)[/tex]
- Mass of water: [tex]\(85 \, \text{g} = 0.085 \, \text{kg}\)[/tex]
- Mass of copper calorimeter: [tex]\(50 \, \text{g} = 0.050 \, \text{kg}\)[/tex]
### Step 2: Given Data
- Initial temperature of ice: [tex]\(-15^{\circ} \text{C}\)[/tex]
- Initial temperature of water: [tex]\(40^{\circ} \text{C}\)[/tex]
- Specific heat capacity of ice: [tex]\(2,100 \, \text{J/kg} \cdot \text{K}\)[/tex]
- Specific heat capacity of water: [tex]\(4,186 \, \text{J/kg} \cdot \text{K}\)[/tex]
- Specific heat capacity of copper: [tex]\(400 \, \text{J/kg} \cdot \text{K}\)[/tex]
- Latent heat of fusion of ice: [tex]\(3.34 \times 10^5 \, \text{J/kg}\)[/tex]
### Step 3: Heat Required to Warm Ice from [tex]\(-15^{\circ} \text{C}\)[/tex] to [tex]\(0^{\circ} \text{C}\)[/tex]
[tex]\[ Q_1 = m_{\text{ice}} \times c_{\text{ice}} \times \Delta T_{\text{ice}} \][/tex]
[tex]\[ Q_1 = 0.0032 \, \text{kg} \times 2,100 \, \text{J/kg} \cdot \text{K} \times (0^{\circ} \text{C} - (-15^{\circ} \text{C})) \][/tex]
[tex]\[ Q_1 = 0.0032 \times 2,100 \times 15 \][/tex]
[tex]\[ Q_1 = 100.8 \, \text{J} \][/tex]
### Step 4: Heat Required to Melt Ice at [tex]\(0^{\circ} \text{C}\)[/tex]
[tex]\[ Q_2 = m_{\text{ice}} \times L_f \][/tex]
[tex]\[ Q_2 = 0.0032 \, \text{kg} \times 3.34 \times 10^5 \, \text{J/kg} \][/tex]
[tex]\[ Q_2 = 1,068.8 \, \text{J} \][/tex]
Now, the total heat required for the ice to become liquid water at [tex]\(0^{\circ} \text{C}\)[/tex]:
[tex]\[ Q_{\text{total ice}} = Q_1 + Q_2 \][/tex]
[tex]\[ Q_{\text{total ice}} = 100.8 + 1,068.8 \][/tex]
[tex]\[ Q_{\text{total ice}} = 1,169.6 \, \text{J} \][/tex]
### Step 5: Heat Lost by Water and Calorimeter
The water and copper calorimeter will lose heat as they cool down to the final temperature [tex]\( T_f \)[/tex].
### Final Balance Equation
The heat gained by ice (to warm up and melt) will be equal to the heat lost by the water and the copper calorimeter combined:
[tex]\[ Q_{\text{ice to } T_f} = m_{\text{ice}} \times c_{\text{water}} \times (T_f - 0) \][/tex]
[tex]\[ Q_{\text{water to } T_f} = m_{\text{water}} \times c_{\text{water}} \times (40 - T_f) \][/tex]
[tex]\[ Q_{\text{copper to } T_f} = m_{\text{copper}} \times c_{\text{copper}} \times (40 - T_f) \][/tex]
Using the heat balance equation:
[tex]\[ Q_{\text{total ice}} + Q_{\text{ice to } T_f} = Q_{\text{water to } T_f} + Q_{\text{copper to } T_f} \][/tex]
And solving numerically, we find that:
[tex]\[ T_f \approx 35.618 \, ^\circ \text{C} \][/tex]
### Final Results:
1. Heating ice to [tex]\(0^{\circ} \text{C}\)[/tex]:
- Energy required: [tex]\(100.8 \, \text{J}\)[/tex]
2. Melting ice at [tex]\(0^{\circ} \text{C}\)[/tex]:
- Energy required: [tex]\(1,068.8 \, \text{J}\)[/tex]
3. Final temperature of the resulting mixture:
- [tex]\(35.618 \, ^\circ \text{C}\)[/tex]
This concludes our detailed step-by-step solution for the problem.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.