Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the greatest common factor of [tex]\(60x^4y^7\)[/tex], [tex]\(45x^5y^5\)[/tex], and [tex]\(75x^3y\)[/tex]?

A. [tex]\(5xy\)[/tex]
B. [tex]\(15x^3y\)[/tex]
C. [tex]\(45x^3y^5\)[/tex]
D. [tex]\(75x^5y^7\)[/tex]

Sagot :

To determine the greatest common factor (GCF) of the terms [tex]\( 60 x^4 y^7 \)[/tex], [tex]\( 45 x^5 y^5 \)[/tex], and [tex]\( 75 x^3 y \)[/tex], we will address both the coefficients and the variable parts separately.

### Step-by-Step Approach:

1. Find the GCF of the coefficients:
- The coefficients are [tex]\(60\)[/tex], [tex]\(45\)[/tex], and [tex]\(75\)[/tex].
- To find the GCF of these numbers, we can use their prime factorizations:
[tex]\[ 60 = 2^2 \cdot 3 \cdot 5 \][/tex]
[tex]\[ 45 = 3^2 \cdot 5 \][/tex]
[tex]\[ 75 = 3 \cdot 5^2 \][/tex]
- The common prime factors across all three numbers are [tex]\(3\)[/tex] and [tex]\(5\)[/tex].
- Taking the lowest power of each common prime factor:
[tex]\[ GCF = 3^1 \cdot 5^1 = 15 \][/tex]

2. Find the GCF of the variable powers for [tex]\(x\)[/tex]:
- The exponents of [tex]\(x\)[/tex] in the terms are [tex]\(4\)[/tex], [tex]\(5\)[/tex], and [tex]\(3\)[/tex].
[tex]\[ GCF(x^4, x^5, x^3) = x^{\min(4, 5, 3)} = x^3 \][/tex]

3. Find the GCF of the variable powers for [tex]\(y\)[/tex]:
- The exponents of [tex]\(y\)[/tex] in the terms are [tex]\(7\)[/tex], [tex]\(5\)[/tex], and [tex]\(1\)[/tex].
[tex]\[ GCF(y^7, y^5, y^1) = y^{\min(7, 5, 1)} = y^1 = y \][/tex]

4. Combine the GCFs:
- We have determined the GCFs of the coefficients and the variables separately. Now, combine them:
[tex]\[ GCF = 15 \cdot x^3 \cdot y = 15x^3y \][/tex]

### Conclusion:
The greatest common factor of [tex]\( 60 x^4 y^7 \)[/tex], [tex]\( 45 x^5 y^5 \)[/tex], and [tex]\( 75 x^3 y \)[/tex] is:
[tex]\[ \boxed{15 x^3 y} \][/tex]