At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the slope of a line perpendicular to line [tex]\( CD \)[/tex], follow these step-by-step instructions:
1. Identify the form of the given equation:
The equation of line [tex]\( CD \)[/tex] is given as [tex]\((y - 3) = -2(x - 4)\)[/tex].
2. Recognize the form:
This equation is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] represents the slope of the line, [tex]\((x_1, y_1)\)[/tex] is a point on the line.
3. Determine the slope of line [tex]\( CD \)[/tex]:
Compare the given equation [tex]\((y - 3) = -2(x - 4)\)[/tex] with the point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex]:
[tex]\[ m = -2 \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of line [tex]\( CD \)[/tex] is [tex]\(-2\)[/tex].
4. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope. If the slope of line [tex]\( CD \)[/tex] is [tex]\( m = -2 \)[/tex], then the calculation for the negative reciprocal is:
[tex]\[ \text{slope of perpendicular line} = \frac{1}{m} = \frac{1}{-2} = -\left(\frac{1}{-2}\right) = \frac{1}{2} \][/tex]
Therefore, the slope of a line perpendicular to line [tex]\( CD \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
So, the correct answer is [tex]\(\frac{1}{2}\)[/tex].
1. Identify the form of the given equation:
The equation of line [tex]\( CD \)[/tex] is given as [tex]\((y - 3) = -2(x - 4)\)[/tex].
2. Recognize the form:
This equation is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] represents the slope of the line, [tex]\((x_1, y_1)\)[/tex] is a point on the line.
3. Determine the slope of line [tex]\( CD \)[/tex]:
Compare the given equation [tex]\((y - 3) = -2(x - 4)\)[/tex] with the point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex]:
[tex]\[ m = -2 \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of line [tex]\( CD \)[/tex] is [tex]\(-2\)[/tex].
4. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope. If the slope of line [tex]\( CD \)[/tex] is [tex]\( m = -2 \)[/tex], then the calculation for the negative reciprocal is:
[tex]\[ \text{slope of perpendicular line} = \frac{1}{m} = \frac{1}{-2} = -\left(\frac{1}{-2}\right) = \frac{1}{2} \][/tex]
Therefore, the slope of a line perpendicular to line [tex]\( CD \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
So, the correct answer is [tex]\(\frac{1}{2}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.