Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the slope of a line perpendicular to line [tex]\( CD \)[/tex], follow these step-by-step instructions:
1. Identify the form of the given equation:
The equation of line [tex]\( CD \)[/tex] is given as [tex]\((y - 3) = -2(x - 4)\)[/tex].
2. Recognize the form:
This equation is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] represents the slope of the line, [tex]\((x_1, y_1)\)[/tex] is a point on the line.
3. Determine the slope of line [tex]\( CD \)[/tex]:
Compare the given equation [tex]\((y - 3) = -2(x - 4)\)[/tex] with the point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex]:
[tex]\[ m = -2 \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of line [tex]\( CD \)[/tex] is [tex]\(-2\)[/tex].
4. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope. If the slope of line [tex]\( CD \)[/tex] is [tex]\( m = -2 \)[/tex], then the calculation for the negative reciprocal is:
[tex]\[ \text{slope of perpendicular line} = \frac{1}{m} = \frac{1}{-2} = -\left(\frac{1}{-2}\right) = \frac{1}{2} \][/tex]
Therefore, the slope of a line perpendicular to line [tex]\( CD \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
So, the correct answer is [tex]\(\frac{1}{2}\)[/tex].
1. Identify the form of the given equation:
The equation of line [tex]\( CD \)[/tex] is given as [tex]\((y - 3) = -2(x - 4)\)[/tex].
2. Recognize the form:
This equation is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] represents the slope of the line, [tex]\((x_1, y_1)\)[/tex] is a point on the line.
3. Determine the slope of line [tex]\( CD \)[/tex]:
Compare the given equation [tex]\((y - 3) = -2(x - 4)\)[/tex] with the point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex]:
[tex]\[ m = -2 \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of line [tex]\( CD \)[/tex] is [tex]\(-2\)[/tex].
4. Find the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope. If the slope of line [tex]\( CD \)[/tex] is [tex]\( m = -2 \)[/tex], then the calculation for the negative reciprocal is:
[tex]\[ \text{slope of perpendicular line} = \frac{1}{m} = \frac{1}{-2} = -\left(\frac{1}{-2}\right) = \frac{1}{2} \][/tex]
Therefore, the slope of a line perpendicular to line [tex]\( CD \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
So, the correct answer is [tex]\(\frac{1}{2}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.