Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze each polynomial function to determine the degree and find which one has exactly 11 roots.
1. First polynomial: [tex]\( f(x) = (x-1)(x+1)^{11} \)[/tex]
- The term [tex]\( (x-1) \)[/tex] has a degree of 1.
- The term [tex]\( (x+1)^{11} \)[/tex] has a degree of [tex]\( 11 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 1 + 11 = 12 \)[/tex].
2. Second polynomial: [tex]\( f(x) = (x+2)^3(x^2-7x+3)^4 \)[/tex]
- The term [tex]\( (x+2)^3 \)[/tex] has a degree of [tex]\( 3 \)[/tex].
- The term [tex]\( (x^2-7x+3)^4 \)[/tex] involves a quadratic polynomial [tex]\( (x^2-7x+3) \)[/tex] raised to the power of [tex]\( 4 \)[/tex], which means it has a degree of [tex]\( 2 \times 4 = 8 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 3 + 8 = 11 \)[/tex].
3. Third polynomial: [tex]\( f(x) = (x^5 + 7x + 14)^8 \)[/tex]
- Inside the polynomial [tex]\( (x^5 + 7x + 14) \)[/tex], the highest degree term is [tex]\( x^5 \)[/tex].
- When raised to the power of [tex]\( 8 \)[/tex], the degree becomes [tex]\( 5 \times 8 = 40 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 40 \)[/tex].
4. Fourth polynomial: [tex]\( f(x) = 11x^5 + 5x + 25 \)[/tex]
- The highest degree term is [tex]\( 11x^5 \)[/tex], which means it has a degree of [tex]\( 5 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 5 \)[/tex].
Based on the analysis, the polynomial function [tex]\( f(x) = (x+2)^3(x^2-7x+3)^4 \)[/tex] has exactly 11 roots.
Thus, the polynomial function with exactly 11 roots is:
[tex]\[ f(x) = (x+2)^3(x^2-7x+3)^4 \][/tex]
1. First polynomial: [tex]\( f(x) = (x-1)(x+1)^{11} \)[/tex]
- The term [tex]\( (x-1) \)[/tex] has a degree of 1.
- The term [tex]\( (x+1)^{11} \)[/tex] has a degree of [tex]\( 11 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 1 + 11 = 12 \)[/tex].
2. Second polynomial: [tex]\( f(x) = (x+2)^3(x^2-7x+3)^4 \)[/tex]
- The term [tex]\( (x+2)^3 \)[/tex] has a degree of [tex]\( 3 \)[/tex].
- The term [tex]\( (x^2-7x+3)^4 \)[/tex] involves a quadratic polynomial [tex]\( (x^2-7x+3) \)[/tex] raised to the power of [tex]\( 4 \)[/tex], which means it has a degree of [tex]\( 2 \times 4 = 8 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 3 + 8 = 11 \)[/tex].
3. Third polynomial: [tex]\( f(x) = (x^5 + 7x + 14)^8 \)[/tex]
- Inside the polynomial [tex]\( (x^5 + 7x + 14) \)[/tex], the highest degree term is [tex]\( x^5 \)[/tex].
- When raised to the power of [tex]\( 8 \)[/tex], the degree becomes [tex]\( 5 \times 8 = 40 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 40 \)[/tex].
4. Fourth polynomial: [tex]\( f(x) = 11x^5 + 5x + 25 \)[/tex]
- The highest degree term is [tex]\( 11x^5 \)[/tex], which means it has a degree of [tex]\( 5 \)[/tex].
- Therefore, the total degree of the polynomial is [tex]\( 5 \)[/tex].
Based on the analysis, the polynomial function [tex]\( f(x) = (x+2)^3(x^2-7x+3)^4 \)[/tex] has exactly 11 roots.
Thus, the polynomial function with exactly 11 roots is:
[tex]\[ f(x) = (x+2)^3(x^2-7x+3)^4 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.