Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given options must also be a root of the polynomial function [tex]\( f(x) \)[/tex], we need to consider the properties of polynomial functions with real coefficients.
1. Polynomials with real coefficients have complex roots that occur in conjugate pairs. This means that if the polynomial [tex]\( f(x) \)[/tex] has a complex root [tex]\( a + bi \)[/tex], the conjugate [tex]\( a - bi \)[/tex] must also be a root.
2. In this case, we are given that [tex]\( -3 + i \)[/tex] is a root of [tex]\( f(x) \)[/tex].
3. To find the conjugate of [tex]\( -3 + i \)[/tex]:
- The real part of [tex]\( -3 + i \)[/tex] is [tex]\( -3 \)[/tex].
- The imaginary part of [tex]\( -3 + i \)[/tex] is [tex]\( i \)[/tex].
The conjugate is found by changing the sign of the imaginary part while keeping the real part the same:
- Therefore, the conjugate of [tex]\( -3 + i \)[/tex] is [tex]\( -3 - i \)[/tex].
4. Given that polynomials with real coefficients have roots in conjugate pairs, if [tex]\( -3 + i \)[/tex] is a root, [tex]\( -3 - i \)[/tex] must also be a root.
Therefore, the correct answer is:
[tex]\[ -3 - i \][/tex]
1. Polynomials with real coefficients have complex roots that occur in conjugate pairs. This means that if the polynomial [tex]\( f(x) \)[/tex] has a complex root [tex]\( a + bi \)[/tex], the conjugate [tex]\( a - bi \)[/tex] must also be a root.
2. In this case, we are given that [tex]\( -3 + i \)[/tex] is a root of [tex]\( f(x) \)[/tex].
3. To find the conjugate of [tex]\( -3 + i \)[/tex]:
- The real part of [tex]\( -3 + i \)[/tex] is [tex]\( -3 \)[/tex].
- The imaginary part of [tex]\( -3 + i \)[/tex] is [tex]\( i \)[/tex].
The conjugate is found by changing the sign of the imaginary part while keeping the real part the same:
- Therefore, the conjugate of [tex]\( -3 + i \)[/tex] is [tex]\( -3 - i \)[/tex].
4. Given that polynomials with real coefficients have roots in conjugate pairs, if [tex]\( -3 + i \)[/tex] is a root, [tex]\( -3 - i \)[/tex] must also be a root.
Therefore, the correct answer is:
[tex]\[ -3 - i \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.