Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Select the correct answer from each drop-down menu.

Consider the given equation:
[tex]\[ 3x + 2y = 8 \][/tex]

The equation [tex]\( y = x + \)[/tex] represents the line parallel to the given equation and passes through the point (-2, 5).

Reset
Next

Sagot :

To determine the equation of the line parallel to the given equation [tex]\(3x + 2y = 8\)[/tex] that passes through the point [tex]\((-2, 5)\)[/tex]:

### Step-by-Step Solution:

1. Convert the given equation to slope-intercept form [tex]\(y = mx + b\)[/tex]:

The given equation is [tex]\(3x + 2y = 8\)[/tex]. Rearrange it to solve for [tex]\(y\)[/tex]:
[tex]\[ 2y = -3x + 8 \implies y = -\frac{3}{2}x + 4 \][/tex]

2. Identify the slope [tex]\(m\)[/tex]:

From the slope-intercept form [tex]\(y = -\frac{3}{2}x + 4\)[/tex], we can see that the slope [tex]\(m\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].

3. Use the point-slope form of the equation to find the equation of the line parallel to the given line and passing through the point [tex]\((-2, 5)\)[/tex]:

The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.

We have:
[tex]\[ x_1 = -2, \quad y_1 = 5, \quad m = -\frac{3}{2} \][/tex]

4. Substitute the known values into the point-slope form:
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]

5. Simplify the equation:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]

### Conclusion:
The equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] that passes through the point [tex]\((-2, 5)\)[/tex] is:
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]

Therefore, you should select:
- [tex]\(y = -\frac{3}{2}x + 2\)[/tex]