Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's walk through the steps to determine the correct equation for the path of the second object.
### Step-by-Step Solution:
1. Equation of the First Object:
The position of the first object with respect to time is given by the equation:
[tex]\[ d = 2.5t + 2.2 \][/tex]
Here, the slope of the equation (rate of change of distance with time) is [tex]\(2.5\)[/tex].
2. Condition of Parallel Lines:
Since the second object's path is described by a line parallel to the first object, its slope must be the same. Therefore, the slope of the second object's path is also [tex]\(2.5\)[/tex].
3. Identifying the y-intercept:
The second object’s path passes through the point [tex]\((t=0, d=1)\)[/tex]. This point gives us the y-intercept of the line.
4. General Form of the Equation:
For a linear equation in the slope-intercept form [tex]\(d = mt + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept:
- Slope ([tex]\(m\)[/tex]) is [tex]\(2.5\)[/tex].
- Y-intercept ([tex]\(b\)[/tex]) is [tex]\(1\)[/tex] (since it passes through the point [tex]\((0, 1)\)[/tex]).
5. Equation of the Second Object:
Plugging the slope and the y-intercept into the slope-intercept form gives us:
[tex]\[ d = 2.5t + 1 \][/tex]
6. Selecting the Correct Answer:
We compare this derived equation to the given choices:
- A. [tex]\(d = 2.5t + 1\)[/tex]
- B. [tex]\(d = t + 2.5\)[/tex]
- C. [tex]\(d = -0.4t + 1\)[/tex]
- D. [tex]\(d = 2.5t \div 3.2\)[/tex]
The correct answer matches the derived equation:
A. [tex]\(d = 2.5t + 1\)[/tex]
So, the equation of the second graph is:
[tex]\[ \boxed{d = 2.5t + 1} \][/tex]
### Step-by-Step Solution:
1. Equation of the First Object:
The position of the first object with respect to time is given by the equation:
[tex]\[ d = 2.5t + 2.2 \][/tex]
Here, the slope of the equation (rate of change of distance with time) is [tex]\(2.5\)[/tex].
2. Condition of Parallel Lines:
Since the second object's path is described by a line parallel to the first object, its slope must be the same. Therefore, the slope of the second object's path is also [tex]\(2.5\)[/tex].
3. Identifying the y-intercept:
The second object’s path passes through the point [tex]\((t=0, d=1)\)[/tex]. This point gives us the y-intercept of the line.
4. General Form of the Equation:
For a linear equation in the slope-intercept form [tex]\(d = mt + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept:
- Slope ([tex]\(m\)[/tex]) is [tex]\(2.5\)[/tex].
- Y-intercept ([tex]\(b\)[/tex]) is [tex]\(1\)[/tex] (since it passes through the point [tex]\((0, 1)\)[/tex]).
5. Equation of the Second Object:
Plugging the slope and the y-intercept into the slope-intercept form gives us:
[tex]\[ d = 2.5t + 1 \][/tex]
6. Selecting the Correct Answer:
We compare this derived equation to the given choices:
- A. [tex]\(d = 2.5t + 1\)[/tex]
- B. [tex]\(d = t + 2.5\)[/tex]
- C. [tex]\(d = -0.4t + 1\)[/tex]
- D. [tex]\(d = 2.5t \div 3.2\)[/tex]
The correct answer matches the derived equation:
A. [tex]\(d = 2.5t + 1\)[/tex]
So, the equation of the second graph is:
[tex]\[ \boxed{d = 2.5t + 1} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.