Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which equation can pair with [tex]\( x - y = -2 \)[/tex] to create a consistent and dependent system, we need to understand the criteria for consistency and dependency.
1. Consistent system: A system of equations is consistent if there is at least one solution that satisfies all the equations simultaneously.
2. Dependent system: A system of equations is dependent if it has infinitely many solutions. This typically occurs when the equations describe the same line, or one equation is a multiple of the other.
Here are our given equations:
1. [tex]\( 6x + 2y = 15 \)[/tex]
2. [tex]\( -3x + 3y = 6 \)[/tex]
3. [tex]\( -8x - 3y = 2 \)[/tex]
4. [tex]\( 4x - 4y \pm 6 \)[/tex]
We need to find the pair of equations that form a consistent and dependent system with [tex]\( x - y = -2 \)[/tex].
First, let's evaluate each option.
1. Equation: [tex]\( 6x + 2y = 15 \)[/tex]:
- Simplify [tex]\( x - y = -2 \)[/tex] to express [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]: [tex]\( x = y - 2 \)[/tex].
- Substitute [tex]\( x = y - 2 \)[/tex] into [tex]\( 6x + 2y = 15 \)[/tex]:
[tex]\[ 6(y - 2) + 2y = 15 \implies 6y - 12 + 2y = 15 \implies 8y - 12 = 15 \implies 8y = 27 \implies y = \frac{27}{8}. \][/tex]
- This is a unique solution, making the system consistent but not dependent.
- Result: Not dependent.
2. Equation: [tex]\( -3x + 3y = 6 \)[/tex]:
- Substitute [tex]\( x = y - 2 \)[/tex] into [tex]\( -3x + 3y = 6 \)[/tex]:
[tex]\[ -3(y - 2) + 3y = 6 \implies -3y + 6 + 3y = 6 \implies 6 = 6. \][/tex]
- This is an identity, meaning the original equation [tex]\( -3x + 3y = 6 \)[/tex] is equivalent to [tex]\( x - y = -2 \)[/tex] when both sides are multiplied by [tex]\(-3\)[/tex].
- Result: Dependent.
3. Equation: [tex]\( -8x - 3y = 2 \)[/tex]:
- Substitute [tex]\( x = y - 2 \)[/tex] into [tex]\( -8x - 3y = 2 \)[/tex]:
[tex]\[ -8(y - 2) - 3y = 2 \implies -8y + 16 - 3y = 2 \implies -11y + 16 = 2 \implies -11y = -14 \implies y = \frac{14}{11}. \][/tex]
- This is a unique solution, making the system consistent but not dependent.
- Result: Not dependent.
4. Equation: [tex]\( 4x - 4y \pm 6 \)[/tex]:
- We will consider the equation [tex]\( 4x - 4y + 6 = 0 \)[/tex] as it was likely meant to represent an equation precisely.
- Simplify to [tex]\( 4(x - y) + 6 = 0 \)[/tex]:
[tex]\[ 4(x - y) + 6 = 0 \implies 4(-2) + 6 = 0 \implies -8 + 6 = -2 \ne 0. \][/tex]
- This indicates a different process is needed. Consider adjusting terms:
Let's denote [tex]\( 4(x - y) \pm 6 = 0 \)[/tex], where for consistency with [tex]\(x - y = -2\)[/tex], substituting [tex]\(x = y - 2\)[/tex]:
[tex]\[ 4(x - y) = -8 \rightarrow -2 + 6 = -2 \rightarrow -8 + 8 = 0 \rightarrow \rightarrow Different terms arise - Result: Impossible with need of specific term - Result: After evaluating the given equations, the equation that can pair with \( x - y = -2 \) to form a consistent and dependent system is: \[ -3x + 3y = 6 \][/tex]
1. Consistent system: A system of equations is consistent if there is at least one solution that satisfies all the equations simultaneously.
2. Dependent system: A system of equations is dependent if it has infinitely many solutions. This typically occurs when the equations describe the same line, or one equation is a multiple of the other.
Here are our given equations:
1. [tex]\( 6x + 2y = 15 \)[/tex]
2. [tex]\( -3x + 3y = 6 \)[/tex]
3. [tex]\( -8x - 3y = 2 \)[/tex]
4. [tex]\( 4x - 4y \pm 6 \)[/tex]
We need to find the pair of equations that form a consistent and dependent system with [tex]\( x - y = -2 \)[/tex].
First, let's evaluate each option.
1. Equation: [tex]\( 6x + 2y = 15 \)[/tex]:
- Simplify [tex]\( x - y = -2 \)[/tex] to express [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]: [tex]\( x = y - 2 \)[/tex].
- Substitute [tex]\( x = y - 2 \)[/tex] into [tex]\( 6x + 2y = 15 \)[/tex]:
[tex]\[ 6(y - 2) + 2y = 15 \implies 6y - 12 + 2y = 15 \implies 8y - 12 = 15 \implies 8y = 27 \implies y = \frac{27}{8}. \][/tex]
- This is a unique solution, making the system consistent but not dependent.
- Result: Not dependent.
2. Equation: [tex]\( -3x + 3y = 6 \)[/tex]:
- Substitute [tex]\( x = y - 2 \)[/tex] into [tex]\( -3x + 3y = 6 \)[/tex]:
[tex]\[ -3(y - 2) + 3y = 6 \implies -3y + 6 + 3y = 6 \implies 6 = 6. \][/tex]
- This is an identity, meaning the original equation [tex]\( -3x + 3y = 6 \)[/tex] is equivalent to [tex]\( x - y = -2 \)[/tex] when both sides are multiplied by [tex]\(-3\)[/tex].
- Result: Dependent.
3. Equation: [tex]\( -8x - 3y = 2 \)[/tex]:
- Substitute [tex]\( x = y - 2 \)[/tex] into [tex]\( -8x - 3y = 2 \)[/tex]:
[tex]\[ -8(y - 2) - 3y = 2 \implies -8y + 16 - 3y = 2 \implies -11y + 16 = 2 \implies -11y = -14 \implies y = \frac{14}{11}. \][/tex]
- This is a unique solution, making the system consistent but not dependent.
- Result: Not dependent.
4. Equation: [tex]\( 4x - 4y \pm 6 \)[/tex]:
- We will consider the equation [tex]\( 4x - 4y + 6 = 0 \)[/tex] as it was likely meant to represent an equation precisely.
- Simplify to [tex]\( 4(x - y) + 6 = 0 \)[/tex]:
[tex]\[ 4(x - y) + 6 = 0 \implies 4(-2) + 6 = 0 \implies -8 + 6 = -2 \ne 0. \][/tex]
- This indicates a different process is needed. Consider adjusting terms:
Let's denote [tex]\( 4(x - y) \pm 6 = 0 \)[/tex], where for consistency with [tex]\(x - y = -2\)[/tex], substituting [tex]\(x = y - 2\)[/tex]:
[tex]\[ 4(x - y) = -8 \rightarrow -2 + 6 = -2 \rightarrow -8 + 8 = 0 \rightarrow \rightarrow Different terms arise - Result: Impossible with need of specific term - Result: After evaluating the given equations, the equation that can pair with \( x - y = -2 \) to form a consistent and dependent system is: \[ -3x + 3y = 6 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.