Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve for the number of years [tex]\( t \)[/tex] that Jacques' money was in the account earning compound interest, we will use the compound interest formula:
[tex]\[ V(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Given values from the problem are:
- [tex]\( P = 1900 \)[/tex] (initial principal investment)
- [tex]\( r = 0.04 \)[/tex] (annual interest rate as a decimal)
- [tex]\( n = 2 \)[/tex] (number of times interest is compounded per year, since it is compounded semiannually)
- [tex]\( V = 3875.79 \)[/tex] (value of investment after [tex]\( t \)[/tex] years)
We need to find [tex]\( t \)[/tex]. Let’s break down the problem step by step:
1. Set up the equation using the given values:
[tex]\[ 3875.79 = 1900 \left(1 + \frac{0.04}{2}\right)^{2t} \][/tex]
2. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.04}{2} = 1 + 0.02 = 1.02 \][/tex]
So the formula becomes:
[tex]\[ 3875.79 = 1900 \times (1.02)^{2t} \][/tex]
3. Divide both sides of the equation by 1900 to isolate the exponential term:
[tex]\[ \frac{3875.79}{1900} = (1.02)^{2t} \][/tex]
This gives us:
[tex]\[ 2.0398894736842106 = (1.02)^{2t} \][/tex]
4. Take the natural logarithm on both sides to solve for the exponent:
[tex]\[ \ln(2.0398894736842106) = \ln((1.02)^{2t}) \][/tex]
5. Use the property of logarithms to bring the exponent down:
[tex]\[ \ln(2.0398894736842106) = 2t \cdot \ln(1.02) \][/tex]
6. Solve for [tex]\( 2t \)[/tex] by dividing both sides by [tex]\(\ln(1.02)\)[/tex]:
[tex]\[ 2t = \frac{\ln(2.0398894736842106)}{\ln(1.02)} \][/tex]
[tex]\[ 2t = \frac{36.00005272832286}{\ln(1.02)} \][/tex]
[tex]\[ 2t = 36.00005272832286 \][/tex]
7. Finally, solve for [tex]\( t \)[/tex] by dividing by 2:
[tex]\[ t = \frac{36.00005272832286}{2} = 18.00002636416143 \][/tex]
So, the length of time that Jacques' money was in the account is approximately [tex]\( 18 \)[/tex] years.
Thus, the correct answer is [tex]\( \boxed{18 \text{ years}} \)[/tex].
[tex]\[ V(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Given values from the problem are:
- [tex]\( P = 1900 \)[/tex] (initial principal investment)
- [tex]\( r = 0.04 \)[/tex] (annual interest rate as a decimal)
- [tex]\( n = 2 \)[/tex] (number of times interest is compounded per year, since it is compounded semiannually)
- [tex]\( V = 3875.79 \)[/tex] (value of investment after [tex]\( t \)[/tex] years)
We need to find [tex]\( t \)[/tex]. Let’s break down the problem step by step:
1. Set up the equation using the given values:
[tex]\[ 3875.79 = 1900 \left(1 + \frac{0.04}{2}\right)^{2t} \][/tex]
2. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.04}{2} = 1 + 0.02 = 1.02 \][/tex]
So the formula becomes:
[tex]\[ 3875.79 = 1900 \times (1.02)^{2t} \][/tex]
3. Divide both sides of the equation by 1900 to isolate the exponential term:
[tex]\[ \frac{3875.79}{1900} = (1.02)^{2t} \][/tex]
This gives us:
[tex]\[ 2.0398894736842106 = (1.02)^{2t} \][/tex]
4. Take the natural logarithm on both sides to solve for the exponent:
[tex]\[ \ln(2.0398894736842106) = \ln((1.02)^{2t}) \][/tex]
5. Use the property of logarithms to bring the exponent down:
[tex]\[ \ln(2.0398894736842106) = 2t \cdot \ln(1.02) \][/tex]
6. Solve for [tex]\( 2t \)[/tex] by dividing both sides by [tex]\(\ln(1.02)\)[/tex]:
[tex]\[ 2t = \frac{\ln(2.0398894736842106)}{\ln(1.02)} \][/tex]
[tex]\[ 2t = \frac{36.00005272832286}{\ln(1.02)} \][/tex]
[tex]\[ 2t = 36.00005272832286 \][/tex]
7. Finally, solve for [tex]\( t \)[/tex] by dividing by 2:
[tex]\[ t = \frac{36.00005272832286}{2} = 18.00002636416143 \][/tex]
So, the length of time that Jacques' money was in the account is approximately [tex]\( 18 \)[/tex] years.
Thus, the correct answer is [tex]\( \boxed{18 \text{ years}} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.