Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve for the number of years [tex]\( t \)[/tex] that Jacques' money was in the account earning compound interest, we will use the compound interest formula:
[tex]\[ V(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Given values from the problem are:
- [tex]\( P = 1900 \)[/tex] (initial principal investment)
- [tex]\( r = 0.04 \)[/tex] (annual interest rate as a decimal)
- [tex]\( n = 2 \)[/tex] (number of times interest is compounded per year, since it is compounded semiannually)
- [tex]\( V = 3875.79 \)[/tex] (value of investment after [tex]\( t \)[/tex] years)
We need to find [tex]\( t \)[/tex]. Let’s break down the problem step by step:
1. Set up the equation using the given values:
[tex]\[ 3875.79 = 1900 \left(1 + \frac{0.04}{2}\right)^{2t} \][/tex]
2. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.04}{2} = 1 + 0.02 = 1.02 \][/tex]
So the formula becomes:
[tex]\[ 3875.79 = 1900 \times (1.02)^{2t} \][/tex]
3. Divide both sides of the equation by 1900 to isolate the exponential term:
[tex]\[ \frac{3875.79}{1900} = (1.02)^{2t} \][/tex]
This gives us:
[tex]\[ 2.0398894736842106 = (1.02)^{2t} \][/tex]
4. Take the natural logarithm on both sides to solve for the exponent:
[tex]\[ \ln(2.0398894736842106) = \ln((1.02)^{2t}) \][/tex]
5. Use the property of logarithms to bring the exponent down:
[tex]\[ \ln(2.0398894736842106) = 2t \cdot \ln(1.02) \][/tex]
6. Solve for [tex]\( 2t \)[/tex] by dividing both sides by [tex]\(\ln(1.02)\)[/tex]:
[tex]\[ 2t = \frac{\ln(2.0398894736842106)}{\ln(1.02)} \][/tex]
[tex]\[ 2t = \frac{36.00005272832286}{\ln(1.02)} \][/tex]
[tex]\[ 2t = 36.00005272832286 \][/tex]
7. Finally, solve for [tex]\( t \)[/tex] by dividing by 2:
[tex]\[ t = \frac{36.00005272832286}{2} = 18.00002636416143 \][/tex]
So, the length of time that Jacques' money was in the account is approximately [tex]\( 18 \)[/tex] years.
Thus, the correct answer is [tex]\( \boxed{18 \text{ years}} \)[/tex].
[tex]\[ V(t) = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Given values from the problem are:
- [tex]\( P = 1900 \)[/tex] (initial principal investment)
- [tex]\( r = 0.04 \)[/tex] (annual interest rate as a decimal)
- [tex]\( n = 2 \)[/tex] (number of times interest is compounded per year, since it is compounded semiannually)
- [tex]\( V = 3875.79 \)[/tex] (value of investment after [tex]\( t \)[/tex] years)
We need to find [tex]\( t \)[/tex]. Let’s break down the problem step by step:
1. Set up the equation using the given values:
[tex]\[ 3875.79 = 1900 \left(1 + \frac{0.04}{2}\right)^{2t} \][/tex]
2. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.04}{2} = 1 + 0.02 = 1.02 \][/tex]
So the formula becomes:
[tex]\[ 3875.79 = 1900 \times (1.02)^{2t} \][/tex]
3. Divide both sides of the equation by 1900 to isolate the exponential term:
[tex]\[ \frac{3875.79}{1900} = (1.02)^{2t} \][/tex]
This gives us:
[tex]\[ 2.0398894736842106 = (1.02)^{2t} \][/tex]
4. Take the natural logarithm on both sides to solve for the exponent:
[tex]\[ \ln(2.0398894736842106) = \ln((1.02)^{2t}) \][/tex]
5. Use the property of logarithms to bring the exponent down:
[tex]\[ \ln(2.0398894736842106) = 2t \cdot \ln(1.02) \][/tex]
6. Solve for [tex]\( 2t \)[/tex] by dividing both sides by [tex]\(\ln(1.02)\)[/tex]:
[tex]\[ 2t = \frac{\ln(2.0398894736842106)}{\ln(1.02)} \][/tex]
[tex]\[ 2t = \frac{36.00005272832286}{\ln(1.02)} \][/tex]
[tex]\[ 2t = 36.00005272832286 \][/tex]
7. Finally, solve for [tex]\( t \)[/tex] by dividing by 2:
[tex]\[ t = \frac{36.00005272832286}{2} = 18.00002636416143 \][/tex]
So, the length of time that Jacques' money was in the account is approximately [tex]\( 18 \)[/tex] years.
Thus, the correct answer is [tex]\( \boxed{18 \text{ years}} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.