Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's walk through the given problem step by step.
1. Understanding the Problem:
- We have a radioactive substance, Fermium-257, with an initial amount of [tex]\( A \)[/tex].
- The half-life of Fermium-257 is given as 100 days.
- We need to determine the age of the sample when it has decayed to 60% of its original amount.
2. Using the Decay Formula:
- The formula for the remaining amount of a substance after [tex]\( t \)[/tex] days is given by:
[tex]\[ P(t) = A \left( \frac{1}{2} \right)^{\frac{t}{h}} \][/tex]
where [tex]\( P(t) \)[/tex] is the amount remaining after [tex]\( t \)[/tex] days, [tex]\( A \)[/tex] is the initial amount, and [tex]\( h \)[/tex] is the half-life.
3. Given Information:
- [tex]\( P(t) = 0.60A \)[/tex] (since 60% of the original amount remains)
- [tex]\( h = 100 \)[/tex] days
4. Setting Up the Equation:
- We set the decay formula to match the given condition:
[tex]\[ 0.60A = A \left( \frac{1}{2} \right)^{\frac{t}{100}} \][/tex]
5. Simplifying the Equation:
- We can divide both sides of the equation by [tex]\( A \)[/tex] (assuming [tex]\( A \neq 0 \)[/tex]):
[tex]\[ 0.60 = \left( \frac{1}{2} \right)^{\frac{t}{100}} \][/tex]
6. Solving for [tex]\( t \)[/tex]:
- First, we take the natural logarithm of both sides to help isolate [tex]\( t \)[/tex]:
[tex]\[ \ln(0.60) = \ln\left( \left( \frac{1}{2} \right)^{\frac{t}{100}} \right) \][/tex]
- By using the logarithm power rule, [tex]\( \ln\left( a^b \right) = b \ln(a) \)[/tex], this simplifies to:
[tex]\[ \ln(0.60) = \frac{t}{100} \ln\left( \frac{1}{2} \right) \][/tex]
[tex]\[ \ln(0.60) = \frac{t}{100} \ln(0.5) \][/tex]
7. Isolating [tex]\( t \)[/tex]:
- We then solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.60)}{\ln(0.5)} \times 100 \][/tex]
8. Calculating [tex]\( t \)[/tex]:
- Using the values [tex]\( \ln(0.60) \approx -0.5108 \)[/tex] and [tex]\( \ln(0.5) \approx -0.6931 \)[/tex]:
[tex]\[ t = \frac{-0.5108}{-0.6931} \times 100 \][/tex]
[tex]\[ t \approx 0.737 \times 100 \][/tex]
[tex]\[ t \approx 73.7 \text{ days} \][/tex]
9. Finding the Nearest Given Option:
- The closest given option to 73.7 days is 74 days.
Therefore, the sample is approximately 74 days old.
1. Understanding the Problem:
- We have a radioactive substance, Fermium-257, with an initial amount of [tex]\( A \)[/tex].
- The half-life of Fermium-257 is given as 100 days.
- We need to determine the age of the sample when it has decayed to 60% of its original amount.
2. Using the Decay Formula:
- The formula for the remaining amount of a substance after [tex]\( t \)[/tex] days is given by:
[tex]\[ P(t) = A \left( \frac{1}{2} \right)^{\frac{t}{h}} \][/tex]
where [tex]\( P(t) \)[/tex] is the amount remaining after [tex]\( t \)[/tex] days, [tex]\( A \)[/tex] is the initial amount, and [tex]\( h \)[/tex] is the half-life.
3. Given Information:
- [tex]\( P(t) = 0.60A \)[/tex] (since 60% of the original amount remains)
- [tex]\( h = 100 \)[/tex] days
4. Setting Up the Equation:
- We set the decay formula to match the given condition:
[tex]\[ 0.60A = A \left( \frac{1}{2} \right)^{\frac{t}{100}} \][/tex]
5. Simplifying the Equation:
- We can divide both sides of the equation by [tex]\( A \)[/tex] (assuming [tex]\( A \neq 0 \)[/tex]):
[tex]\[ 0.60 = \left( \frac{1}{2} \right)^{\frac{t}{100}} \][/tex]
6. Solving for [tex]\( t \)[/tex]:
- First, we take the natural logarithm of both sides to help isolate [tex]\( t \)[/tex]:
[tex]\[ \ln(0.60) = \ln\left( \left( \frac{1}{2} \right)^{\frac{t}{100}} \right) \][/tex]
- By using the logarithm power rule, [tex]\( \ln\left( a^b \right) = b \ln(a) \)[/tex], this simplifies to:
[tex]\[ \ln(0.60) = \frac{t}{100} \ln\left( \frac{1}{2} \right) \][/tex]
[tex]\[ \ln(0.60) = \frac{t}{100} \ln(0.5) \][/tex]
7. Isolating [tex]\( t \)[/tex]:
- We then solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.60)}{\ln(0.5)} \times 100 \][/tex]
8. Calculating [tex]\( t \)[/tex]:
- Using the values [tex]\( \ln(0.60) \approx -0.5108 \)[/tex] and [tex]\( \ln(0.5) \approx -0.6931 \)[/tex]:
[tex]\[ t = \frac{-0.5108}{-0.6931} \times 100 \][/tex]
[tex]\[ t \approx 0.737 \times 100 \][/tex]
[tex]\[ t \approx 73.7 \text{ days} \][/tex]
9. Finding the Nearest Given Option:
- The closest given option to 73.7 days is 74 days.
Therefore, the sample is approximately 74 days old.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.