Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let us determine the closure of polynomial functions under subtraction by examining the forms of two polynomials, [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex].
Given:
[tex]\[ f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \][/tex]
[tex]\[ g(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m \][/tex]
To understand the subtraction of two polynomials, we subtract [tex]\( g(x) \)[/tex] from [tex]\( f(x) \)[/tex]:
[tex]\[ h(x) = f(x) - g(x) \][/tex]
Substitute the expressions for [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] into the equation:
[tex]\[ h(x) = (a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n) - (b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m) \][/tex]
Separate and group the like terms:
[tex]\[ h(x) = (a_0 - b_0) + (a_1 - b_1)x + (a_2 - b_2)x^2 + \ldots + (a_k - b_k)x^k \][/tex]
Here, [tex]\( k \)[/tex] is the maximum of [tex]\( n \)[/tex] and [tex]\( m \)[/tex], since some polynomials may have different degrees and a polynomial of a lower degree can be thought to have zero coefficients for the higher-degree terms it does not actually have.
Each term in the polynomial [tex]\( h(x) \)[/tex] is of the form [tex]\( (a_i - b_i)x^i \)[/tex], where [tex]\( (a_i - b_i) \)[/tex] is a real number (because the coefficients of polynomials are real numbers subtracted from each other). The resulting polynomial [tex]\( h(x) \)[/tex] is thus:
[tex]\[ h(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_k x^k \][/tex]
where [tex]\( c_i = a_i - b_i \)[/tex] for the common degrees of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], and either [tex]\( a_i \)[/tex] or [tex]\( b_i \)[/tex] for degrees that only one polynomial reaches if the other does not.
Therefore, the subtraction of two polynomials is itself a polynomial. This demonstrates that the set of polynomial functions is closed under subtraction.
The correct answer is:
[tex]\[ \boxed{\text{C.} \; f(x) \; \text{and} \; g(x) \; \text{are closed under subtraction because when subtracted, the result will be a polynomial.}} \][/tex]
Given:
[tex]\[ f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \][/tex]
[tex]\[ g(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m \][/tex]
To understand the subtraction of two polynomials, we subtract [tex]\( g(x) \)[/tex] from [tex]\( f(x) \)[/tex]:
[tex]\[ h(x) = f(x) - g(x) \][/tex]
Substitute the expressions for [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] into the equation:
[tex]\[ h(x) = (a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n) - (b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m) \][/tex]
Separate and group the like terms:
[tex]\[ h(x) = (a_0 - b_0) + (a_1 - b_1)x + (a_2 - b_2)x^2 + \ldots + (a_k - b_k)x^k \][/tex]
Here, [tex]\( k \)[/tex] is the maximum of [tex]\( n \)[/tex] and [tex]\( m \)[/tex], since some polynomials may have different degrees and a polynomial of a lower degree can be thought to have zero coefficients for the higher-degree terms it does not actually have.
Each term in the polynomial [tex]\( h(x) \)[/tex] is of the form [tex]\( (a_i - b_i)x^i \)[/tex], where [tex]\( (a_i - b_i) \)[/tex] is a real number (because the coefficients of polynomials are real numbers subtracted from each other). The resulting polynomial [tex]\( h(x) \)[/tex] is thus:
[tex]\[ h(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_k x^k \][/tex]
where [tex]\( c_i = a_i - b_i \)[/tex] for the common degrees of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], and either [tex]\( a_i \)[/tex] or [tex]\( b_i \)[/tex] for degrees that only one polynomial reaches if the other does not.
Therefore, the subtraction of two polynomials is itself a polynomial. This demonstrates that the set of polynomial functions is closed under subtraction.
The correct answer is:
[tex]\[ \boxed{\text{C.} \; f(x) \; \text{and} \; g(x) \; \text{are closed under subtraction because when subtracted, the result will be a polynomial.}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.