Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the given line passing through the points [tex]\((-4, 3)\)[/tex] and [tex]\((4, 3)\)[/tex] to determine if it represents a direct variation.
1. Understanding Direct Variation:
- A direct variation implies a linear relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that can be written as [tex]\(y = kx\)[/tex], where [tex]\(k\)[/tex] is a constant.
- The graph of a direct variation is a straight line that passes through the origin [tex]\((0, 0)\)[/tex].
2. Nature of the Given Line:
- The points given are [tex]\((-4, 3)\)[/tex] and [tex]\((4, 3)\)[/tex].
- Both points share the same [tex]\(y\)[/tex]-coordinate, 3.
3. Classification of the Line:
- Since the [tex]\(y\)[/tex]-coordinates are the same for both points, the line is horizontal.
- A horizontal line has the form [tex]\(y = c\)[/tex], where [tex]\(c\)[/tex] is a constant. In this case, [tex]\(y = 3\)[/tex].
4. Checking for Direct Variation:
- For the line to represent a direct variation, it must pass through the origin [tex]\((0, 0)\)[/tex].
- The equation [tex]\(y=3\)[/tex] does not pass through the origin because when [tex]\(x = 0\)[/tex], [tex]\(y\)[/tex] is not 0; instead, it remains 3.
Therefore, the correct description is:
The line does not represent a direct variation because it does not go through the origin.
1. Understanding Direct Variation:
- A direct variation implies a linear relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that can be written as [tex]\(y = kx\)[/tex], where [tex]\(k\)[/tex] is a constant.
- The graph of a direct variation is a straight line that passes through the origin [tex]\((0, 0)\)[/tex].
2. Nature of the Given Line:
- The points given are [tex]\((-4, 3)\)[/tex] and [tex]\((4, 3)\)[/tex].
- Both points share the same [tex]\(y\)[/tex]-coordinate, 3.
3. Classification of the Line:
- Since the [tex]\(y\)[/tex]-coordinates are the same for both points, the line is horizontal.
- A horizontal line has the form [tex]\(y = c\)[/tex], where [tex]\(c\)[/tex] is a constant. In this case, [tex]\(y = 3\)[/tex].
4. Checking for Direct Variation:
- For the line to represent a direct variation, it must pass through the origin [tex]\((0, 0)\)[/tex].
- The equation [tex]\(y=3\)[/tex] does not pass through the origin because when [tex]\(x = 0\)[/tex], [tex]\(y\)[/tex] is not 0; instead, it remains 3.
Therefore, the correct description is:
The line does not represent a direct variation because it does not go through the origin.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.