Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given line passing through the points [tex]\((-4, 3)\)[/tex] and [tex]\((4, 3)\)[/tex] to determine if it represents a direct variation.
1. Understanding Direct Variation:
- A direct variation implies a linear relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that can be written as [tex]\(y = kx\)[/tex], where [tex]\(k\)[/tex] is a constant.
- The graph of a direct variation is a straight line that passes through the origin [tex]\((0, 0)\)[/tex].
2. Nature of the Given Line:
- The points given are [tex]\((-4, 3)\)[/tex] and [tex]\((4, 3)\)[/tex].
- Both points share the same [tex]\(y\)[/tex]-coordinate, 3.
3. Classification of the Line:
- Since the [tex]\(y\)[/tex]-coordinates are the same for both points, the line is horizontal.
- A horizontal line has the form [tex]\(y = c\)[/tex], where [tex]\(c\)[/tex] is a constant. In this case, [tex]\(y = 3\)[/tex].
4. Checking for Direct Variation:
- For the line to represent a direct variation, it must pass through the origin [tex]\((0, 0)\)[/tex].
- The equation [tex]\(y=3\)[/tex] does not pass through the origin because when [tex]\(x = 0\)[/tex], [tex]\(y\)[/tex] is not 0; instead, it remains 3.
Therefore, the correct description is:
The line does not represent a direct variation because it does not go through the origin.
1. Understanding Direct Variation:
- A direct variation implies a linear relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that can be written as [tex]\(y = kx\)[/tex], where [tex]\(k\)[/tex] is a constant.
- The graph of a direct variation is a straight line that passes through the origin [tex]\((0, 0)\)[/tex].
2. Nature of the Given Line:
- The points given are [tex]\((-4, 3)\)[/tex] and [tex]\((4, 3)\)[/tex].
- Both points share the same [tex]\(y\)[/tex]-coordinate, 3.
3. Classification of the Line:
- Since the [tex]\(y\)[/tex]-coordinates are the same for both points, the line is horizontal.
- A horizontal line has the form [tex]\(y = c\)[/tex], where [tex]\(c\)[/tex] is a constant. In this case, [tex]\(y = 3\)[/tex].
4. Checking for Direct Variation:
- For the line to represent a direct variation, it must pass through the origin [tex]\((0, 0)\)[/tex].
- The equation [tex]\(y=3\)[/tex] does not pass through the origin because when [tex]\(x = 0\)[/tex], [tex]\(y\)[/tex] is not 0; instead, it remains 3.
Therefore, the correct description is:
The line does not represent a direct variation because it does not go through the origin.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.