Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step-by-step:
### Part (a): Complete the table
First, we need to verify if the given relative frequencies sum up to 1. These frequencies are:
- Won: 0.4
- Lost: 0.15
- Draw: 0.45
To check this, sum the relative frequencies:
[tex]\[ 0.4 + 0.15 + 0.45 = 1.0 \][/tex]
Since the sum is indeed 1.0, the relative frequencies are valid, and the table is already complete.
### Part (b): How many games did the team play altogether?
We are provided with the following information:
- The team won 20 more games than they lost.
- The relative frequencies of winning, losing, and drawing a game.
Let's denote:
- [tex]\( L \)[/tex] as the number of games the team lost.
- [tex]\( W \)[/tex] as the number of games the team won.
- [tex]\( D \)[/tex] as the number of games the team drew.
- [tex]\( T \)[/tex] as the total number of games the team played.
From the relative frequencies, we know:
[tex]\[ \text{Relative frequency of won} = \frac{W}{T} = 0.4 \][/tex]
[tex]\[ \text{Relative frequency of lost} = \frac{L}{T} = 0.15 \][/tex]
[tex]\[ \text{Relative frequency of draw} = \frac{D}{T} = 0.45 \][/tex]
In addition, we are given that the team won 20 more games than they lost:
[tex]\[ W = L + 20 \][/tex]
Using the relative frequencies and this additional information, we can set up the following equation:
[tex]\[ W = 0.4T \][/tex]
[tex]\[ L = 0.15T \][/tex]
Since [tex]\( W = L + 20 \)[/tex], we can substitute [tex]\( W \)[/tex] and [tex]\( L \)[/tex] into the equation:
[tex]\[ 0.4T = 0.15T + 20 \][/tex]
Solving for [tex]\( T \)[/tex]:
[tex]\[ 0.4T - 0.15T = 20 \][/tex]
[tex]\[ 0.25T = 20 \][/tex]
[tex]\[ T = \frac{20}{0.25} \][/tex]
[tex]\[ T = 80 \][/tex]
Thus, the total number of games the team played is [tex]\( 80 \)[/tex].
To find the individual counts of wins, losses, and draws:
[tex]\[ W = 0.4T = 0.4 \times 80 = 32 \][/tex]
[tex]\[ L = 0.15T = 0.15 \times 80 = 12 \][/tex]
[tex]\[ D = 0.45T = 0.45 \times 80 = 36 \][/tex]
### Summary:
- The total number of games played: [tex]\( 80 \)[/tex]
- Number of games won: [tex]\( 32 \)[/tex]
- Number of games lost: [tex]\( 12 \)[/tex]
- Number of games drawn: [tex]\( 36 \)[/tex]
### Part (a): Complete the table
First, we need to verify if the given relative frequencies sum up to 1. These frequencies are:
- Won: 0.4
- Lost: 0.15
- Draw: 0.45
To check this, sum the relative frequencies:
[tex]\[ 0.4 + 0.15 + 0.45 = 1.0 \][/tex]
Since the sum is indeed 1.0, the relative frequencies are valid, and the table is already complete.
### Part (b): How many games did the team play altogether?
We are provided with the following information:
- The team won 20 more games than they lost.
- The relative frequencies of winning, losing, and drawing a game.
Let's denote:
- [tex]\( L \)[/tex] as the number of games the team lost.
- [tex]\( W \)[/tex] as the number of games the team won.
- [tex]\( D \)[/tex] as the number of games the team drew.
- [tex]\( T \)[/tex] as the total number of games the team played.
From the relative frequencies, we know:
[tex]\[ \text{Relative frequency of won} = \frac{W}{T} = 0.4 \][/tex]
[tex]\[ \text{Relative frequency of lost} = \frac{L}{T} = 0.15 \][/tex]
[tex]\[ \text{Relative frequency of draw} = \frac{D}{T} = 0.45 \][/tex]
In addition, we are given that the team won 20 more games than they lost:
[tex]\[ W = L + 20 \][/tex]
Using the relative frequencies and this additional information, we can set up the following equation:
[tex]\[ W = 0.4T \][/tex]
[tex]\[ L = 0.15T \][/tex]
Since [tex]\( W = L + 20 \)[/tex], we can substitute [tex]\( W \)[/tex] and [tex]\( L \)[/tex] into the equation:
[tex]\[ 0.4T = 0.15T + 20 \][/tex]
Solving for [tex]\( T \)[/tex]:
[tex]\[ 0.4T - 0.15T = 20 \][/tex]
[tex]\[ 0.25T = 20 \][/tex]
[tex]\[ T = \frac{20}{0.25} \][/tex]
[tex]\[ T = 80 \][/tex]
Thus, the total number of games the team played is [tex]\( 80 \)[/tex].
To find the individual counts of wins, losses, and draws:
[tex]\[ W = 0.4T = 0.4 \times 80 = 32 \][/tex]
[tex]\[ L = 0.15T = 0.15 \times 80 = 12 \][/tex]
[tex]\[ D = 0.45T = 0.45 \times 80 = 36 \][/tex]
### Summary:
- The total number of games played: [tex]\( 80 \)[/tex]
- Number of games won: [tex]\( 32 \)[/tex]
- Number of games lost: [tex]\( 12 \)[/tex]
- Number of games drawn: [tex]\( 36 \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.