Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which equation represents the relationship between the distance a car travels, [tex]\(y\)[/tex], in miles, and the time [tex]\(x\)[/tex], in minutes, we'll analyze the data given in the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x & \text{Distance, } y \\ \hline 48 & 12 \\ 64 & 16 \\ 72 & 18 \\ \hline \end{array} \][/tex]
First, we calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of values:
1. For [tex]\(x = 48\)[/tex] and [tex]\(y = 12\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{12}{48} = \frac{1}{4} \][/tex]
2. For [tex]\(x = 64\)[/tex] and [tex]\(y = 16\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{16}{64} = \frac{1}{4} \][/tex]
3. For [tex]\(x = 72\)[/tex] and [tex]\(y = 18\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{18}{72} = \frac{1}{4} \][/tex]
We observe that the ratio [tex]\( \frac{y}{x} \)[/tex] is consistent for all data points and equals [tex]\( \frac{1}{4} \)[/tex]. This implies a linear relationship between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] and can be expressed as:
[tex]\[ y = \frac{1}{4} x \][/tex]
Therefore, the equation that represents the relationship between the distance [tex]\(y\)[/tex] and the time [tex]\(x\)[/tex] for the car is:
[tex]\[ y = \frac{1}{4} x \][/tex]
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x & \text{Distance, } y \\ \hline 48 & 12 \\ 64 & 16 \\ 72 & 18 \\ \hline \end{array} \][/tex]
First, we calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of values:
1. For [tex]\(x = 48\)[/tex] and [tex]\(y = 12\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{12}{48} = \frac{1}{4} \][/tex]
2. For [tex]\(x = 64\)[/tex] and [tex]\(y = 16\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{16}{64} = \frac{1}{4} \][/tex]
3. For [tex]\(x = 72\)[/tex] and [tex]\(y = 18\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{18}{72} = \frac{1}{4} \][/tex]
We observe that the ratio [tex]\( \frac{y}{x} \)[/tex] is consistent for all data points and equals [tex]\( \frac{1}{4} \)[/tex]. This implies a linear relationship between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] and can be expressed as:
[tex]\[ y = \frac{1}{4} x \][/tex]
Therefore, the equation that represents the relationship between the distance [tex]\(y\)[/tex] and the time [tex]\(x\)[/tex] for the car is:
[tex]\[ y = \frac{1}{4} x \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.