Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which equation represents the relationship between the distance a car travels, [tex]\(y\)[/tex], in miles, and the time [tex]\(x\)[/tex], in minutes, we'll analyze the data given in the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x & \text{Distance, } y \\ \hline 48 & 12 \\ 64 & 16 \\ 72 & 18 \\ \hline \end{array} \][/tex]
First, we calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of values:
1. For [tex]\(x = 48\)[/tex] and [tex]\(y = 12\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{12}{48} = \frac{1}{4} \][/tex]
2. For [tex]\(x = 64\)[/tex] and [tex]\(y = 16\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{16}{64} = \frac{1}{4} \][/tex]
3. For [tex]\(x = 72\)[/tex] and [tex]\(y = 18\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{18}{72} = \frac{1}{4} \][/tex]
We observe that the ratio [tex]\( \frac{y}{x} \)[/tex] is consistent for all data points and equals [tex]\( \frac{1}{4} \)[/tex]. This implies a linear relationship between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] and can be expressed as:
[tex]\[ y = \frac{1}{4} x \][/tex]
Therefore, the equation that represents the relationship between the distance [tex]\(y\)[/tex] and the time [tex]\(x\)[/tex] for the car is:
[tex]\[ y = \frac{1}{4} x \][/tex]
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x & \text{Distance, } y \\ \hline 48 & 12 \\ 64 & 16 \\ 72 & 18 \\ \hline \end{array} \][/tex]
First, we calculate the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair of values:
1. For [tex]\(x = 48\)[/tex] and [tex]\(y = 12\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{12}{48} = \frac{1}{4} \][/tex]
2. For [tex]\(x = 64\)[/tex] and [tex]\(y = 16\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{16}{64} = \frac{1}{4} \][/tex]
3. For [tex]\(x = 72\)[/tex] and [tex]\(y = 18\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{18}{72} = \frac{1}{4} \][/tex]
We observe that the ratio [tex]\( \frac{y}{x} \)[/tex] is consistent for all data points and equals [tex]\( \frac{1}{4} \)[/tex]. This implies a linear relationship between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] and can be expressed as:
[tex]\[ y = \frac{1}{4} x \][/tex]
Therefore, the equation that represents the relationship between the distance [tex]\(y\)[/tex] and the time [tex]\(x\)[/tex] for the car is:
[tex]\[ y = \frac{1}{4} x \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.