Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A helium-neon laser emits red light with a wavelength of 632.8 nm in a vacuum. Calculate the energy of a photon of this light.

[Show all work, including the equation and substitution with units.]


Sagot :

To determine the energy of a photon emitted by a helium-neon laser with a wavelength of 632.8 nm, we need to follow several steps.

### Step 1: Convert the wavelength from nanometers to meters
The wavelength given is [tex]\( \lambda = 632.8 \)[/tex] nm. Since 1 nanometer (nm) is [tex]\( 10^{-9} \)[/tex] meters, we convert the wavelength to meters:
[tex]\[ \lambda = 632.8 \times 10^{-9} \ \text{m} = 6.328 \times 10^{-7} \ \text{m} \][/tex]

### Step 2: Calculate the frequency of the light
The speed of light ([tex]\( c \)[/tex]) in a vacuum is approximately [tex]\( 3 \times 10^{8} \ \text{m/s} \)[/tex]. The relationship between the speed of light, wavelength, and frequency ([tex]\( f \)[/tex]) is given by:
[tex]\[ c = \lambda f \][/tex]

Rearranging this equation to solve for the frequency ([tex]\( f \)[/tex]):
[tex]\[ f = \frac{c}{\lambda} \][/tex]

Substitute the known values into the equation:
[tex]\[ f = \frac{3 \times 10^{8} \ \text{m/s}}{6.328 \times 10^{-7} \ \text{m}} \approx 4.740834386852086 \times 10^{14} \ \text{Hz} \][/tex]

### Step 3: Calculate the energy of one photon
The energy ([tex]\( E \)[/tex]) of a photon can be calculated using Planck's equation, which relates the energy of a photon to its frequency:
[tex]\[ E = hf \][/tex]

where [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.626 \times 10^{-34} \ \text{J} \cdot \text{s} \)[/tex]).

Substitute the known values into the equation:
[tex]\[ E = (6.626 \times 10^{-34} \ \text{J} \cdot \text{s}) \times (4.740834386852086 \times 10^{14} \ \text{Hz}) \approx 3.141276864728192 \times 10^{-19} \ \text{J} \][/tex]

### Summary of Results
- Wavelength: [tex]\( 6.328 \times 10^{-7} \ \text{m} \)[/tex]
- Frequency: [tex]\( 4.740834386852086 \times 10^{14} \ \text{Hz} \)[/tex]
- Energy of one photon: [tex]\( 3.141276864728192 \times 10^{-19} \ \text{J} \)[/tex]

Thus, the energy of a photon of light emitted by the helium-neon laser with a wavelength of 632.8 nm is approximately [tex]\( 3.141276864728192 \times 10^{-19} \ \text{J} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.